Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 10, pp 2092–2096 | Cite as

Structure and Properties of Nanocomposites Prepared via the Environmental Crazing of Poly(ethylene terephthalate) in Solutions of Polyelectrolyte Complexes

  • L. M. Yarysheva
  • A. Yu. YaryshevaEmail author
  • A. L. Volynskii
Article
  • 4 Downloads

Abstract

Deformation of amorphous poly(ethylene terephthalate) (PET) in solutions of polyelectrolyte complexes (PEC) of poly(ethylene glycol) with alkali metal salts (potassium thiocyanate or sodium perchlorate) has occurred via the crazing mechanism and has resulted in the formation of a porous structure being filled with PEC during the drawing. The content of PEC in the nanocomposite has increased with the increase in the draw ratio (up to 55%). The hybrid nanocomposites obtained via the crazing have exhibited anisotropy of surface electroconductivity which has been determined by the structural features of the deformed polymer matrix.

Keywords

nanocomposites crazing polyelectrolyte complexes poly(ethylene oxide) poly(ethylene terephthalate) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This study was financially supported by the Russian Science Foundation (project no. 17-13-01017).

Conflict of Interest

No conflict of interest was declared by the authors.

References

  1. 1.
    Kambour, R.P., J. Polym. Sci. Macromol. Rev., 1973, vol. 7, p. 1.  https://doi.org/10.1002/pol.1973.230070 CrossRefGoogle Scholar
  2. 2.
    Volynskii, A.L. and Bakeev, N.F., Solvent Crazing of Polymers, Amsterdam: Elsevier, 1995.Google Scholar
  3. 3.
    Volynskii, A.L. and Bakeev, N.F., Surface Phenomena in the Structural and Mechanical Behaviour of Solid Polymers, London: Taylor and Francis, 2016.CrossRefGoogle Scholar
  4. 4.
    Yarysheva, L.M., Volynskii, A.L., and Bakeev, N.F., Vysokomol. Soed. Ser. B., 1993, vol. 35, no. 7, p. 913.Google Scholar
  5. 5.
    Volynskii, A.L., Yarysheva, L.M., and Bakeev, N.F., Nanotechnol. in Russia, 2007, vol. 2, nos. 3–4, p. 58.Google Scholar
  6. 6.
    Volynskii, A.L. and Bakeev, N.F., Polym. Sci. Ser. C, 2011, vol. 53, no. 1, p. 35.CrossRefGoogle Scholar
  7. 7.
    Volynskii, A.L., Yarysheva, L.M., and Bakeev, N.F., Nanotechnol. in Russia, 2007, vol. 2, nos. 5–6, p. 44.Google Scholar
  8. 8.
    Yarysheva, L.M., Rukhlya, E.G., Yarysheva, A.Yu., Volynskii, A.L., and Bakeev, N.F., Chem. Rev. J., 2012, vol. 2, no. 1, p. 3CrossRefGoogle Scholar
  9. 9.
    Zhigang Xue, Dan He, and Xiaolin Xie, J., Mater. Chem. A, 2015, vol. 3, no. 38, p. 19218.  https://doi.org/10.1039/C5TA03471J CrossRefGoogle Scholar
  10. 10.
    Gurusiddappa, J., Madhuri, W., Suvarna, R.P., and Dasan, K.P., Mater. Today: Proc., 2016, vol. 3, no. 6, p. 1451.  https://doi.org/10.1016/j.matpr.2016.04.028 Google Scholar
  11. 11.
    Ibrahim, S., Yasin, S.M.M., Nee, N.M., Ahmad, R., and Johan, M.R., Solid State Commun., 2012, vol. 152, no. 5, p. 426.  https://doi.org/10.1016/j.ssc.2011.11.037 CrossRefGoogle Scholar
  12. 12.
    Money, B.K., Hariharan, K., and Swenson, J., Solid State Ionics, 2014. Vol. 262, p. 785.  https://doi.org/10.1016/j.ssi.2013.09.033 CrossRefGoogle Scholar
  13. 13.
    Golodnitsky, D., Strauss, E., Peled, E., and Greenbaum, S., J. Electrochem. Soc., 2015, vol. 162, no. 14, p. A2551.  https://doi.org/10.1149/2.0161514jes CrossRefGoogle Scholar
  14. 14.
    Zhukovsky, V.M., Bushkova, O.V., Lirova, B.I., Tyutyunnik, I.E., and Animitsa, I.E., Ross. Khim. Zh., 2001, vol. 45, no. 4, p. 35.Google Scholar
  15. 15.
    Pereira, J.N., Costa, C.M., and Lanceros-Méndez, S., J. Power Sources., 2015, vol. 81, no. 5, p. 378.  https://doi.org/10.1016/j.jpowsour.2015.02.010 CrossRefGoogle Scholar
  16. 16.
    El-Bellihi, A.A., Bayoumy, W.A., Masoud, E.M., and Mousa, M.A., Bull. Korean Chem. Soc., 2012, vol. 33, no. 9, p. 2949.CrossRefGoogle Scholar
  17. 17.
    Pradhan, D.K., Choudhary, R.N.P., and Samantaray, B.K., Mater. Chem. Phys., 2009, vol. 115, nos. 2–3, p. 557.  https://doi.org/10.1016/j.matchemphys.2009.01.008 CrossRefGoogle Scholar
  18. 18.
    Das, S. and Ghosh, A., AIP Adv., 2015, vol. 5, no. 2, p. 027125.  https://doi.org/10.1063/1.4913320 CrossRefGoogle Scholar
  19. 19.
    Ji-Sun Oh, Yongku Kang, and Dong-Won Kim., Electrochim. Acta, 2006, vol. 52, no. 4, p. 1567.  https://doi.org/10.1016/j.electacta.2006.02.062 CrossRefGoogle Scholar
  20. 20.
    Volynskii, A.L., Yarysheva, A.Yu., Rukhlya, E.G., Yarysheva, L.M., and Bakeev, N.F., Polymer Sci. Ser. A, 2015, vol. 57, no. 5, p. 515.CrossRefGoogle Scholar
  21. 21.
    Rukhlya, T.G., Arzhakova, O.V., Yarysheva, L.M., Volynskii, A.L., and Bakeev, N.F., Polymer Sci. Ser. B., 2007, vol. 49, nos. 5–6, p. 118.CrossRefGoogle Scholar
  22. 22.
    Rukhlya, E.G., Litmanovich, E.A., Dolinnyi, A.I., Yarysheva, L.M., Volynskii, A.L., and Bakeev, N.F., Macromolecules, 2011, vol. 44, no. 13, p. 5262.CrossRefGoogle Scholar
  23. 23.
    Yarysheva, L.M., Saifullina, S.A., Rozova, E.A., Sizov, A.I., Bulychev, B.M., Volynskii, A.L., and Bakeev, N.F., Vysokomol. Soed., Ser. A, 1994, vol. 36, no. 2, p. 363.Google Scholar
  24. 24.
    Saifullina, S.A., Yarysheva, L.M., Volynskii, A.L., and Bakeev, N.F., Vysokomol. Soed. Ser. A, 1997, vol. 39, no. 3, p. 456.Google Scholar
  25. 25.
    Saifullina, S.A., Yarysheva, L.M., Volkov, A.V., Volynskii, A.L., and Bakeev, N.F., Vysokomol. Soed. Ser. A, 1996, vol. 38, no. 7, p. 1172.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. M. Yarysheva
    • 1
  • A. Yu. Yarysheva
    • 1
    Email author
  • A. L. Volynskii
    • 1
  1. 1.Lomonosov Moscow State University, Department of ChemistryMoscowRussia

Personalised recommendations