Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 10, pp 2075–2081 | Cite as

Synthesis of Nanocrystalline Materials Based on the Bi2O3-TiO2 System

  • N. A. LomanovaEmail author
  • M. V. Tomkovich
  • A. V. Osipov
  • V. L. Ugolkov
Article
  • 9 Downloads

Abstract

Nanocrystalline bismuth titanates Bi2Ti4O11 (115±5 nm), Bi4Ti3O12 (60±5 nm), Bi2Ti2O7 (105±5 nm), Bi8TiO14 (82±5 nm), and Bi12TiO20 (102±5 nm) were synthesized by heat treatment of the coprecipitated composition. It was revealed that the crystallite sizes of the target materials are determined by the minimum crystallite size of the first phase to crystallize in the reaction system. The process parameters of the synthesis and of the sintering of the materials were found to depend on the melting point of the surface (nonautonomous) phase. It was shown that the formation of the materials is mainly influenced by the kinetic factor, and the influence of the structural features is less pronounced.

Keywords

nanocrystals bismuth titanate thermal behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This study was financially supported by the Russian Science Foundation (project no. 16-13-10252).

Conflict of Interest

No conflict of interest was declared by the authors.

References

  1. 1.
    Speranskaya, E.I., Rez, I.S., Kozlova, L.V., Skorikov, V.M., and Slavov, V.I., Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 1965, vol. 1, no. 2, p. 232.Google Scholar
  2. 2.
    Lu, C.-D., Chang, L.-S., Lu, Y.-F., and Lu, F.-H., Ceram. Int., 2009, vol. 35, p. 2699.  https://doi.org/10.1016/j.ceramint.2009.03.001 CrossRefGoogle Scholar
  3. 3.
    Esquivel-Elizondo, J.R., Hinojosa, B.B., and Nino, J.C., Chem. Mater., 2011, vol. 23, p. 4965.  https://doi.org/10.1021/cm202154c CrossRefGoogle Scholar
  4. 4.
    Lopez-Martinez, J., Romero-Serrano, A., Hernandez-Ramirez, A., Zeifert, B., Gomez-Yanez, C., and Martinez-Sanchez, R., Thermochim. Acta, 2011, vol. 516, p. 35.  https://doi.org/10.1016/j.tca.2011.01.008 CrossRefGoogle Scholar
  5. 5.
    Bohm, H., J. Eur. Ceram. Soc., 2007, vol. 27, nos. 3–4, p. 887.  https://doi.org/10.1016/j.jeurceramsoc.2006.04.059 CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Zhang, Y., Fu, B., Hong, M., and Xiang, M., Ceram. Int., 2015, vol. 41, p. 10243.  https://doi.org/10.1016/j.ceramint.2015.04.137 CrossRefGoogle Scholar
  7. 7.
    Fu, B., Zhang, Y., Hong, M., Jiang, F., and Cao, J., J. Mater. Sci., 2013, vol. 24, p. 3240.  https://doi.org/10.1007/s10854-013-1234-y Google Scholar
  8. 8.
    Aurrivillius, B., Ark. Kemi, 1949, vol. 1, no. 1, p. 463.Google Scholar
  9. 9.
    Joung, M.R., Jeong, B.-J., Kim, J.-S., Woo, S.-R., Park, H.-M., and Nahm, S., J. Am. Ceram. Soc., 2014, vol. 97, p. 2491.  https://doi.org/10.1111/jace.12959 CrossRefGoogle Scholar
  10. 10.
    Radaev, S.F. and Simonov, V.I., Kristallografiya, 1992, vol. 37, p. 914.Google Scholar
  11. 11.
    Sarin, V.A., Rider, E.E., Kanepit, V.N., Bydanov, N.N., Volkov, V.V., Kargin, Yu.F., and Skorikov, V.M., Kristallografiya, 1989, vol. 34, p. 628.Google Scholar
  12. 12.
    Hector, A.L. and Wiggin, S.B., J. Solid State Chem., 2004, vol. 177, p. 139.  https://doi.org/10.1016/S0022-4596(03)00378-5 CrossRefGoogle Scholar
  13. 13.
    Kahlenberg, V. and Bohm, H., J. Alloys Compd., 1995, vol. 223, p. 142.  https://doi.org/10.1107/S0108768194004386 CrossRefGoogle Scholar
  14. 14.
    Watanabe, T., Kojima, T., Sakai, T., Funakubo, H., Osada, M., Noguchi, Y., and Miyayama, M., J. Appl. Phys., 2002, vol. 92, no. 3, p. 1518.  https://doi.org/10.1063/1.1491594 CrossRefGoogle Scholar
  15. 15.
    Cagnon, J., Boesch, D.S., Finstrom, N.H., Nergiz, S.Z., Keane, S.P., and Stemmer, S., J. Appl. Phys., 2007, vol. 102, p. 044102.  https://doi.org/10.1063/1.2769777 CrossRefGoogle Scholar
  16. 16.
    Jiang, A.Q., Hu, Z.X., and Zhang, L.D., J. Appl. Phys., 1999, vol. 85, p. 1739.  https://doi.org/10.1063/L369340 CrossRefGoogle Scholar
  17. 17.
    Toyoda, M. and Payne, D.A., Mater. Lett., 1993, vol. 18, nos. 1–2, p. 84.  https://doi.org/10.1016/0167-577X(93)90062-3 CrossRefGoogle Scholar
  18. 18.
    Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., and Ugolkov, V.L., Russ. J. Gen. Chem., 2018, vol. 88, no. 12, p. 2459.  https://doi.org/10.1134/S1070363218120010 CrossRefGoogle Scholar
  19. 19.
    Morozov, M.I., Mezentseva, L.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2002, vol. 72, no. 7, p. 1038.  https://doi.org/10.1023/A:1020734312307 CrossRefGoogle Scholar
  20. 20.
    Fu, B.J., Zhang, Y.C., Hong, M., Jiang, F., and Cao, J.L., J. Mater. Sci., 2013, vol. 24, p. 3240.  https://doi.org/10.1007/s10854-013-1234-y Google Scholar
  21. 21.
    Zhou, J., Zou, Zh., Ray, A.K., and Zhao, X.S., Ind. Eng. Chem. Res., 2007, vol. 46, no. 3, p. 745.  https://doi.org/10.1021/ie0613220 CrossRefGoogle Scholar
  22. 22.
    Lomanova, N.A., Morozov, M.I., Ugolkov, V.L., and Gusarov, V.V., Russ. J. Inorg. Mater., 2006, vol. 42, no. 2, p. 189.  https://doi.org/10.1134/S0020168506020142 CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Zhang, Y., Fu, B., Hong, M., and Xiang, M., Ceram. Int., 2015, vol. 41, p. 10243.  https://doi.org/10.1016/j.ceramint.2015.04.137 CrossRefGoogle Scholar
  24. 24.
    Knop, O. and Brisse, F., Can. J. Chem., 1969, vol. 47, p. 971.  https://doi.org/10.1139/v69-155#.W1cjMMLWi70 CrossRefGoogle Scholar
  25. 25.
    Kolesnik, I.V., Lebedev, V.A., and Garshev, A.V., Nanosyst.: Phys. Chem. Math., 2018, vol. 9, no. 3, p. 401.  https://doi.org/10.17586/2220-8054-2018-9-3-401-409 Google Scholar
  26. 26.
    Hou, Y., Wang, M., Xu, X.H., Wang, D., Wang, H., and Shang, S.X., J. Am. Ceram. Soc., 2002, vol. 85, p. 3087.  https://doi.org/10.1111/j.1151-2916.2002.tb00585.x CrossRefGoogle Scholar
  27. 27.
    Lomanova, N.A., Tomkovich, M.V., Ugolkov, V.L., and Gusarov, V.V., Russ. J. Appl. Chem., 2017, vol. 90, no. 6, p. 831.  https://doi.org/10.1134/S1070427217060015 CrossRefGoogle Scholar
  28. 28.
    Valeeva, A.A. and Kostenko, M.G., Nanosyst.: Phys., Chem., Math., 2016, vol. 8, no. 6, p. 816.  https://doi.org/10.17586/2220-8054-2017-8-6-816-822 Google Scholar
  29. 29.
    Almjasheva, O.V., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 6, p. 1031.  https://doi.org/10.17586/2220-8054-2016-7-6-1031-1049 Google Scholar
  30. 30.
    Ivicheva, S.N., Kargin, Yu F., Kutsev, S.V., and Ashmarin, A.A., Russ. J. Inorg. Chem., 2015, vol. 60, no. 11, p. 1317.  https://doi.org/10.1134/S003602361511008X CrossRefGoogle Scholar
  31. 31.
    Bespalova, Zh.I. and Khramenkova, A.V., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 3, p. 433.  https://doi.org/10.17586/2220-8054-2016-7-3-433-450 Google Scholar
  32. 32.
    Almjasheva, O.V. and Gusarov, V.V., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 385.  https://doi.org/10.17586/2220-8054-2018-9-5-641-662 CrossRefGoogle Scholar
  33. 33.
    Kovalenko, A.N. and Tugova, E.A., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 5, p. 641.  https://doi.org/10.1134/S0012501609020031 Google Scholar
  34. 34.
    Almjasheva, O.V., Lomanova, N.A., Popkov, V.I., Proskurina, O.V., Tugova, E.A., and Gusarov, V.V., Nanosyst.: Phys., Chem., Math., 2019, vol. 10, no. 4, p. 428.  https://doi.org/10.17586/2220-8054-2019-10-4-428-437 Google Scholar
  35. 35.
    Lomanova, N.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2251.  https://doi.org/10.1134/S1070363213120049 CrossRefGoogle Scholar
  36. 36.
    Lomanova, N.A. and Gusarov, V.V., Nanosyst.: Phys., Chem., Math., 2013, vol. 4, no. 5, p. 696.Google Scholar
  37. 37.
    Gusarov, V.V. and Suvorov, S.A., Russ. J. Appl. Chem., 1990, vol. 63, no. 8, p. 1479.Google Scholar
  38. 38.
    Gusarov, V.V., Thermochim. Acta, 1995, vol. 256, no. 2, p. 467.  https://doi.org/10.1016/0040-6031(94)01993-Q CrossRefGoogle Scholar
  39. 39.
    Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, p. 1846. https://doi.org/1070-3632/97/6712-1846.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Lomanova
    • 1
    Email author
  • M. V. Tomkovich
    • 1
  • A. V. Osipov
    • 2
  • V. L. Ugolkov
    • 2
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Grebenshchikov Institute of Silicates ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations