Synthesis of Nanocrystalline Materials Based on the Bi2O3-TiO2 System
- 9 Downloads
Abstract
Nanocrystalline bismuth titanates Bi2Ti4O11 (115±5 nm), Bi4Ti3O12 (60±5 nm), Bi2Ti2O7 (105±5 nm), Bi8TiO14 (82±5 nm), and Bi12TiO20 (102±5 nm) were synthesized by heat treatment of the coprecipitated composition. It was revealed that the crystallite sizes of the target materials are determined by the minimum crystallite size of the first phase to crystallize in the reaction system. The process parameters of the synthesis and of the sintering of the materials were found to depend on the melting point of the surface (nonautonomous) phase. It was shown that the formation of the materials is mainly influenced by the kinetic factor, and the influence of the structural features is less pronounced.
Keywords
nanocrystals bismuth titanate thermal behaviorPreview
Unable to display preview. Download preview PDF.
Notes
Funding
This study was financially supported by the Russian Science Foundation (project no. 16-13-10252).
Conflict of Interest
No conflict of interest was declared by the authors.
References
- 1.Speranskaya, E.I., Rez, I.S., Kozlova, L.V., Skorikov, V.M., and Slavov, V.I., Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 1965, vol. 1, no. 2, p. 232.Google Scholar
- 2.Lu, C.-D., Chang, L.-S., Lu, Y.-F., and Lu, F.-H., Ceram. Int., 2009, vol. 35, p. 2699. https://doi.org/10.1016/j.ceramint.2009.03.001 CrossRefGoogle Scholar
- 3.Esquivel-Elizondo, J.R., Hinojosa, B.B., and Nino, J.C., Chem. Mater., 2011, vol. 23, p. 4965. https://doi.org/10.1021/cm202154c CrossRefGoogle Scholar
- 4.Lopez-Martinez, J., Romero-Serrano, A., Hernandez-Ramirez, A., Zeifert, B., Gomez-Yanez, C., and Martinez-Sanchez, R., Thermochim. Acta, 2011, vol. 516, p. 35. https://doi.org/10.1016/j.tca.2011.01.008 CrossRefGoogle Scholar
- 5.Bohm, H., J. Eur. Ceram. Soc., 2007, vol. 27, nos. 3–4, p. 887. https://doi.org/10.1016/j.jeurceramsoc.2006.04.059 CrossRefGoogle Scholar
- 6.Zhang, Y., Zhang, Y., Fu, B., Hong, M., and Xiang, M., Ceram. Int., 2015, vol. 41, p. 10243. https://doi.org/10.1016/j.ceramint.2015.04.137 CrossRefGoogle Scholar
- 7.Fu, B., Zhang, Y., Hong, M., Jiang, F., and Cao, J., J. Mater. Sci., 2013, vol. 24, p. 3240. https://doi.org/10.1007/s10854-013-1234-y Google Scholar
- 8.Aurrivillius, B., Ark. Kemi, 1949, vol. 1, no. 1, p. 463.Google Scholar
- 9.Joung, M.R., Jeong, B.-J., Kim, J.-S., Woo, S.-R., Park, H.-M., and Nahm, S., J. Am. Ceram. Soc., 2014, vol. 97, p. 2491. https://doi.org/10.1111/jace.12959 CrossRefGoogle Scholar
- 10.Radaev, S.F. and Simonov, V.I., Kristallografiya, 1992, vol. 37, p. 914.Google Scholar
- 11.Sarin, V.A., Rider, E.E., Kanepit, V.N., Bydanov, N.N., Volkov, V.V., Kargin, Yu.F., and Skorikov, V.M., Kristallografiya, 1989, vol. 34, p. 628.Google Scholar
- 12.Hector, A.L. and Wiggin, S.B., J. Solid State Chem., 2004, vol. 177, p. 139. https://doi.org/10.1016/S0022-4596(03)00378-5 CrossRefGoogle Scholar
- 13.Kahlenberg, V. and Bohm, H., J. Alloys Compd., 1995, vol. 223, p. 142. https://doi.org/10.1107/S0108768194004386 CrossRefGoogle Scholar
- 14.Watanabe, T., Kojima, T., Sakai, T., Funakubo, H., Osada, M., Noguchi, Y., and Miyayama, M., J. Appl. Phys., 2002, vol. 92, no. 3, p. 1518. https://doi.org/10.1063/1.1491594 CrossRefGoogle Scholar
- 15.Cagnon, J., Boesch, D.S., Finstrom, N.H., Nergiz, S.Z., Keane, S.P., and Stemmer, S., J. Appl. Phys., 2007, vol. 102, p. 044102. https://doi.org/10.1063/1.2769777 CrossRefGoogle Scholar
- 16.Jiang, A.Q., Hu, Z.X., and Zhang, L.D., J. Appl. Phys., 1999, vol. 85, p. 1739. https://doi.org/10.1063/L369340 CrossRefGoogle Scholar
- 17.Toyoda, M. and Payne, D.A., Mater. Lett., 1993, vol. 18, nos. 1–2, p. 84. https://doi.org/10.1016/0167-577X(93)90062-3 CrossRefGoogle Scholar
- 18.Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., and Ugolkov, V.L., Russ. J. Gen. Chem., 2018, vol. 88, no. 12, p. 2459. https://doi.org/10.1134/S1070363218120010 CrossRefGoogle Scholar
- 19.Morozov, M.I., Mezentseva, L.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2002, vol. 72, no. 7, p. 1038. https://doi.org/10.1023/A:1020734312307 CrossRefGoogle Scholar
- 20.Fu, B.J., Zhang, Y.C., Hong, M., Jiang, F., and Cao, J.L., J. Mater. Sci., 2013, vol. 24, p. 3240. https://doi.org/10.1007/s10854-013-1234-y Google Scholar
- 21.Zhou, J., Zou, Zh., Ray, A.K., and Zhao, X.S., Ind. Eng. Chem. Res., 2007, vol. 46, no. 3, p. 745. https://doi.org/10.1021/ie0613220 CrossRefGoogle Scholar
- 22.Lomanova, N.A., Morozov, M.I., Ugolkov, V.L., and Gusarov, V.V., Russ. J. Inorg. Mater., 2006, vol. 42, no. 2, p. 189. https://doi.org/10.1134/S0020168506020142 CrossRefGoogle Scholar
- 23.Zhang, Y., Zhang, Y., Fu, B., Hong, M., and Xiang, M., Ceram. Int., 2015, vol. 41, p. 10243. https://doi.org/10.1016/j.ceramint.2015.04.137 CrossRefGoogle Scholar
- 24.Knop, O. and Brisse, F., Can. J. Chem., 1969, vol. 47, p. 971. https://doi.org/10.1139/v69-155#.W1cjMMLWi70 CrossRefGoogle Scholar
- 25.Kolesnik, I.V., Lebedev, V.A., and Garshev, A.V., Nanosyst.: Phys. Chem. Math., 2018, vol. 9, no. 3, p. 401. https://doi.org/10.17586/2220-8054-2018-9-3-401-409 Google Scholar
- 26.Hou, Y., Wang, M., Xu, X.H., Wang, D., Wang, H., and Shang, S.X., J. Am. Ceram. Soc., 2002, vol. 85, p. 3087. https://doi.org/10.1111/j.1151-2916.2002.tb00585.x CrossRefGoogle Scholar
- 27.Lomanova, N.A., Tomkovich, M.V., Ugolkov, V.L., and Gusarov, V.V., Russ. J. Appl. Chem., 2017, vol. 90, no. 6, p. 831. https://doi.org/10.1134/S1070427217060015 CrossRefGoogle Scholar
- 28.Valeeva, A.A. and Kostenko, M.G., Nanosyst.: Phys., Chem., Math., 2016, vol. 8, no. 6, p. 816. https://doi.org/10.17586/2220-8054-2017-8-6-816-822 Google Scholar
- 29.Almjasheva, O.V., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 6, p. 1031. https://doi.org/10.17586/2220-8054-2016-7-6-1031-1049 Google Scholar
- 30.Ivicheva, S.N., Kargin, Yu F., Kutsev, S.V., and Ashmarin, A.A., Russ. J. Inorg. Chem., 2015, vol. 60, no. 11, p. 1317. https://doi.org/10.1134/S003602361511008X CrossRefGoogle Scholar
- 31.Bespalova, Zh.I. and Khramenkova, A.V., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 3, p. 433. https://doi.org/10.17586/2220-8054-2016-7-3-433-450 Google Scholar
- 32.Almjasheva, O.V. and Gusarov, V.V., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 385. https://doi.org/10.17586/2220-8054-2018-9-5-641-662 CrossRefGoogle Scholar
- 33.Kovalenko, A.N. and Tugova, E.A., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 5, p. 641. https://doi.org/10.1134/S0012501609020031 Google Scholar
- 34.Almjasheva, O.V., Lomanova, N.A., Popkov, V.I., Proskurina, O.V., Tugova, E.A., and Gusarov, V.V., Nanosyst.: Phys., Chem., Math., 2019, vol. 10, no. 4, p. 428. https://doi.org/10.17586/2220-8054-2019-10-4-428-437 Google Scholar
- 35.Lomanova, N.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2251. https://doi.org/10.1134/S1070363213120049 CrossRefGoogle Scholar
- 36.Lomanova, N.A. and Gusarov, V.V., Nanosyst.: Phys., Chem., Math., 2013, vol. 4, no. 5, p. 696.Google Scholar
- 37.Gusarov, V.V. and Suvorov, S.A., Russ. J. Appl. Chem., 1990, vol. 63, no. 8, p. 1479.Google Scholar
- 38.Gusarov, V.V., Thermochim. Acta, 1995, vol. 256, no. 2, p. 467. https://doi.org/10.1016/0040-6031(94)01993-Q CrossRefGoogle Scholar
- 39.Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, p. 1846. https://doi.org/1070-3632/97/6712-1846.Google Scholar