Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 8, pp 1642–1648 | Cite as

Hexanuclear Silver(I) Hexamethylene Dithiocarbamate Cluster [Ag6{S2CN(CH2)6}6]·2CH2Cl2: Preparation, Molecular Structure (Manifestation of Argentophilic Interaction), and Thermal Behavior

  • E. V. Korneeva
  • A. V. IvanovEmail author
  • A. V. Gerasimenko
  • O. V. Loseva
  • E. V. Novikova
  • M. A. Ivanov
Article

Abstract

A new silver(I) cyclohexamethylene dithiocarbamate has been isolated in the form of a hexanuclear solvated cluster [Ag6{S2CN(CH2)6}6]·2CH2Cl2. Structure of the obtained compound has been elucidated by IR spectroscopy, X-ray diffraction analysis, and simultaneous thermal analysis methods. Each of the dithiocarbamate ligands performs a μ3-bridging function, asymmetrically linking three silver atoms. The molecules of the complex are additionally stabilized by argentophilic Ag-Ag bonds (3.0204 Å) formed by each of the silver atoms with two nearest neighbors. The multistage thermal decomposition process of the resulting complex includes desolvation and thermolysis of a six-nuclear cluster with the formation of Ag2S and elemental silver as intermediate and final products, respectively.

Keywords

silver(I) alkylene dithiocarbamates cluster complexes molecular structure argentophilic interaction thermal behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Tong, M.C., Chen, W., Sun, J., Ghosh, D., and Chen, S., J. Phys. Chem. (B), 2006, vol. 110, no. 39, p. 19238. doi  https://doi.org/10.1021/jp0631174 Google Scholar
  2. 2.
    Reynoso-García, P.J., Güizado-Rodríguez, M., Barba, V., Ramos-Ortiz, G., and Martínez-Gutiérrez, H., Adv. Condens. Matter Phys., 2018, vol. 2018, p. 1. doi  https://doi.org/10.1155/2018/4376051 Google Scholar
  3. 3.
    Sabaqian, S., Nemati, F., Nahzomi, H.T., and Heravi, M.M., Carbohydr. Polym., 2018, vol. 184, p. 221. doi  https://doi.org/10.1016/j.carbpol.2017.12.045 Google Scholar
  4. 4.
    Hussain, S.T., Bakar, S.A., Saima, B.B., and Muhammad, B., Appl. Surf. Sci., 2012, vol. 258, p. 9610. doi  https://doi.org/10.1016/j.apsusc.2012.05.157 Google Scholar
  5. 5.
    Ehsan, M.A., Khaledi, H., Tahir, A.A., Ming, H.N., Wijayantha, K.G.U., and Mazhar, M., Thin Solid Films, 2013, vol. 536, p. 124. doi  https://doi.org/10.1016/j.tsf.2013.03.092 Google Scholar
  6. 6.
    Mothes, R., Petzold, H., Jakob, A., Rüffer, T., and Lang, H., Inorg. Chim. Acta, 2015, vol. 429, p. 227. doi  https://doi.org/10.1016/j.ica.2015.02.008 Google Scholar
  7. 7.
    Mothes, R., Jakob, A., Waechtler, T., Schulz, S.E., Gessner, T., and Lang, H., Eur. J. Inorg. Chem., 2015, vol. 2015, no. 10, p. 1726. doi  https://doi.org/10.1002/ejic.201403182 Google Scholar
  8. 8.
    Zhang, Y., Hong, G., Zhang, Y., Chen, G., Li, F., Dai, H., and Wang, Q., ACS Nano, 2012, vol. 6, no. 5, p. 3695. doi  https://doi.org/10.1021/nn301218z Google Scholar
  9. 9.
    Zhang, Y., Zhang, Y., Hong, G., He, W., Zhou, K., Yang, K., Li, F., Chen, G., Liu, Z., Dai, H., and Wang, Q., Biomaterials, 2013, vol. 34, no. 14, p. 3639. doi  https://doi.org/10.1016/j.biomaterials.2013.01.089 Google Scholar
  10. 10.
    Li, C., Zhang, Y., Wang, M., Zhang, Y., Chen, G., Li, L., Wu, D., and Wang, Q., Biomaterials, 2014, vol. 35, no. 1, p. 393. doi  https://doi.org/10.1016/j.biomaterials.2013.10.010 Google Scholar
  11. 11.
    Korneeva, E.V., Loseva, O.V., Smolentsev, A.I., and Ivanov, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 8, p. 1681. doi  https://doi.org/10.1134/S1070363218080200 Google Scholar
  12. 12.
    Korneeva, E.V., Smolentsev, A.I., Antzutkin, O.N., and Ivanov, A.V., Russ. Chem. Bull., 2019, vol. 68, no. 1, p. 40. doi  https://doi.org/10.1007/s11172-019-2413-7 Google Scholar
  13. 13.
    Anacker-Eickhoff, H., Hesse, R., Jennische, P., and Wahlberg, A., Acta Chem. Scand. (A), 1982, vol. 36, no. 3, p. 251. doi  https://doi.org/10.3891/acta.chem.scand.36a-0251 Google Scholar
  14. 14.
    Song, Y.-W., Yu, Z., and Zhang, Q.-F., Acta Crystallogr. (C), 2006, vol. 62, no. 5, p. m214. doi  https://doi.org/10.1107/S0108270106006688 Google Scholar
  15. 15.
    Yin, X., Xie, M.-B., Zhang, W.-G., and Fan, J., Acta Crystallogr. (E), 2007, vol. 63, no. 9, p. m2273. doi  https://doi.org/10.1107/S1600536807035180 Google Scholar
  16. 16.
    Hesse, R., Acta Crystallogr., 1960, vol. 13, no. 12, p. 1025. doi  https://doi.org/10.1107/S0365110X60002430 Google Scholar
  17. 17.
    Yamaguchi, H., Kido, A., Uechi, T., and Yasukouchi, K., Bull. Chem. Soc. Jpn., 1976, vol. 49, no. 5, p. 1271. doi  https://doi.org/10.1246/bcsj.49.1271 Google Scholar
  18. 18.
    Hesse, R. and Nilson, L., Acta Chem. Scand., 1969, vol. 23, no. 3, p. 825. doi  https://doi.org/10.3891/acta.chem.scand.23-0825 Google Scholar
  19. 19.
    Yin, X., Xie, M.-B., Zhang, W.-G., Fan, J., and Zeller, M., Acta Crystallogr. (E), 2007, vol. 63, no. 8, p. m2063. doi  https://doi.org/10.1107/S1600536807031431 Google Scholar
  20. 20.
    Zhang, W.-G., Zhong, Y., Tan, M.Y., Liu, W.-S., and Su, C.-Y., Chin. J. Chem., 2002, vol. 20, no. 5, p. 420. doi  https://doi.org/10.1002/cjoc.20020200503 Google Scholar
  21. 21.
    Jennische, P. and Hesse, R., Acta Chem. Scand., 1971, vol. 25, no. 2, p. 423. doi  https://doi.org/10.3891/acta.chem.scand.25-0423 Google Scholar
  22. 22.
    Liu, C.W., Liao, P.-K., Fang, C.-S., Saillard, J.-Y., Kahlal, S., and Wang, J.-C., Chem. Commun., 2011, vol. 47, no. 20, p. 5831. doi  https://doi.org/10.1039/c1cc10168d Google Scholar
  23. 23.
    Wang, Y., Shi, Y.-F., Zou, X.-C., Li, X.-B., Peng, Y., and He, Y.-C., Polyhedron, 2019, vol. 157, p. 321. doi  https://doi.org/10.1016/j.poly.2018.10.006 Google Scholar
  24. 24.
    Huang, Z., Lei, X., Hong, M., and Liu, H., Inorg. Chem., 1992, vol. 31, no. 13, p. 2990. doi  https://doi.org/10.1021/ic00039a060 Google Scholar
  25. 25.
    Zhang, Q.F., Cao, R., Hong, M.C., Su, W.P., and Liu, H.Q., Inorg. Chim. Acta, 1998, vol. 277, no. 2, p. 171. doi  https://doi.org/10.1016/S0020-1693(97)06148-3 Google Scholar
  26. 26.
    Byr’ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.Google Scholar
  27. 27.
    Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK-, YaMR- i mass-spektroskopii v organicheskoi khimii (The Use of UV, IR, NMR, and Mass Spectroscopy in Organic Chemistry), Moscow: Mosk. Gos. Univ., 1979.Google Scholar
  28. 28.
    Gremlih, G.U., Yazyk spektrov. Vvedenie v interpretatsiyu spektrov organicheskikh soedinenii (The Language of the Spectra. Introduction to the Interpretation of the Spectra of Organic Compounds), Moscow: OOO «Bruker Optik», 2002.Google Scholar
  29. 29.
    Pentin, Yu.A. and Vilkov, L.V., Fizicheskie metody issledovaniya v khimii (Physical Research Methods in Chemistry), Moscow: Mir, OOO “Izdatel’stvo AST,” 2006.Google Scholar
  30. 30.
    Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441. doi  https://doi.org/10.1021/j100785a001 Google Scholar
  31. 31.
    Bondi, A., J. Phys. Chem., 1966, vol. 70, no. 9, p. 3006. doi  https://doi.org/10.1021/j100881a503 Google Scholar
  32. 32.
    Alcock, N.W., Adv. Inorg. Chem. Radiochem., 1972, vol. 15, no. 1, p. 1. doi  https://doi.org/10.1016/S0065-2792(08)60016-3 Google Scholar
  33. 33.
    Winter, M., WebElements Periodic Table of the Elements. http://www.webelements.com (accessed January 2010).
  34. 34.
    Greenwood, N.N. and Earnshaw, A., Chemistry of the Elements, Oxford: Pergamon Press, 1989.Google Scholar
  35. 35.
    Ivanov, A.V., Zinkin, S.A., Gerasimenko, A.V., Antzutkin, O.N., and Forsling, W., Russ. J. Coord. Chem., 2007, vol. 33, no. 1, p. 20. doi  https://doi.org/10.1134/S1070328407010046 Google Scholar
  36. 36.
    Bocian, D.F., Pickett, H.M., Rounds, T.C., and Strauss, H.L., J. Am. Chem. Soc., 1975, vol. 97, no. 4, p. 687. doi  https://doi.org/10.1021/ja00837a001 Google Scholar
  37. 37.
    Boessenkool, I.K. and Boeyens, J.C.A., J. Cryst. Mol. Struct., 1980, vol. 10, nos. 1–2, p. 11. doi  https://doi.org/10.1007/BF01209549 Google Scholar
  38. 38.
    Martínez-Castanön, G.A., Sánchez-Loredo, M.G., Dorantes, H.J., Martínez-Mendoza, J.R., Ortega-Zarzosa, G., and Ruiz, F., Mater. Lett., 2005, vol. 59, no. 4, p. 529. doi  https://doi.org/10.1016/j.matlet.2004.10.043 Google Scholar
  39. 39.
    Kracek, F.C., Trans. Am. Geophys. Union, 1946, vol. 27, no. 3, p. 364. doi  https://doi.org/10.1029/TR027i003p00364 Google Scholar
  40. 40.
    Bruker, APEX2. Bruker AXS Inc., Madison, Wisconsin, USA, 2010.Google Scholar
  41. 41.
    Bruker, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2010.Google Scholar
  42. 42.
    Sheldrick, G.M., Acta Crystallogr. (A), 2008, vol. 64, no. 1, p. 112. doi  https://doi.org/10.1107/S0108767307043930 Google Scholar
  43. 43.
    Loseva, O.V., Rodina, T.A., Ivanov, A.V., Lutsenko, I.A., Korneeva, E.V., Gerasimenko, A.V., and Smolentsev, A.I., Russ. J. Coord. Chem. 2018, vol. 44, no. 10, p. 604. doi  https://doi.org/10.1134/S107032841810007X Google Scholar
  44. 44.
    Ivanov, A.V., Ivakhnenko, E.V., and Gerasimenko, A.V., Forsling, W., Russ. J. Inorg. Chem., 2003, vol. 48, no. 1, p. 45.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Korneeva
    • 1
  • A. V. Ivanov
    • 1
    Email author
  • A. V. Gerasimenko
    • 2
  • O. V. Loseva
    • 1
  • E. V. Novikova
    • 1
  • M. A. Ivanov
    • 1
  1. 1.Institute of Geology and Nature ManagementFar Eastern Branch of the Russian Academy of SciencesBlagoveschenskRussia
  2. 2.Institute of ChemistryFar Eastern Branch of the Russian Academy of SciencesVladivostokRussia

Personalised recommendations