Russian Journal of General Chemistry

, Volume 89, Issue 8, pp 1642–1648 | Cite as

Hexanuclear Silver(I) Hexamethylene Dithiocarbamate Cluster [Ag6{S2CN(CH2)6}6]·2CH2Cl2: Preparation, Molecular Structure (Manifestation of Argentophilic Interaction), and Thermal Behavior

  • E. V. Korneeva
  • A. V. IvanovEmail author
  • A. V. Gerasimenko
  • O. V. Loseva
  • E. V. Novikova
  • M. A. Ivanov


A new silver(I) cyclohexamethylene dithiocarbamate has been isolated in the form of a hexanuclear solvated cluster [Ag6{S2CN(CH2)6}6]·2CH2Cl2. Structure of the obtained compound has been elucidated by IR spectroscopy, X-ray diffraction analysis, and simultaneous thermal analysis methods. Each of the dithiocarbamate ligands performs a μ3-bridging function, asymmetrically linking three silver atoms. The molecules of the complex are additionally stabilized by argentophilic Ag-Ag bonds (3.0204 Å) formed by each of the silver atoms with two nearest neighbors. The multistage thermal decomposition process of the resulting complex includes desolvation and thermolysis of a six-nuclear cluster with the formation of Ag2S and elemental silver as intermediate and final products, respectively.


silver(I) alkylene dithiocarbamates cluster complexes molecular structure argentophilic interaction thermal behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Tong, M.C., Chen, W., Sun, J., Ghosh, D., and Chen, S., J. Phys. Chem. (B), 2006, vol. 110, no. 39, p. 19238. doi Google Scholar
  2. 2.
    Reynoso-García, P.J., Güizado-Rodríguez, M., Barba, V., Ramos-Ortiz, G., and Martínez-Gutiérrez, H., Adv. Condens. Matter Phys., 2018, vol. 2018, p. 1. doi Google Scholar
  3. 3.
    Sabaqian, S., Nemati, F., Nahzomi, H.T., and Heravi, M.M., Carbohydr. Polym., 2018, vol. 184, p. 221. doi Google Scholar
  4. 4.
    Hussain, S.T., Bakar, S.A., Saima, B.B., and Muhammad, B., Appl. Surf. Sci., 2012, vol. 258, p. 9610. doi Google Scholar
  5. 5.
    Ehsan, M.A., Khaledi, H., Tahir, A.A., Ming, H.N., Wijayantha, K.G.U., and Mazhar, M., Thin Solid Films, 2013, vol. 536, p. 124. doi Google Scholar
  6. 6.
    Mothes, R., Petzold, H., Jakob, A., Rüffer, T., and Lang, H., Inorg. Chim. Acta, 2015, vol. 429, p. 227. doi Google Scholar
  7. 7.
    Mothes, R., Jakob, A., Waechtler, T., Schulz, S.E., Gessner, T., and Lang, H., Eur. J. Inorg. Chem., 2015, vol. 2015, no. 10, p. 1726. doi Google Scholar
  8. 8.
    Zhang, Y., Hong, G., Zhang, Y., Chen, G., Li, F., Dai, H., and Wang, Q., ACS Nano, 2012, vol. 6, no. 5, p. 3695. doi Google Scholar
  9. 9.
    Zhang, Y., Zhang, Y., Hong, G., He, W., Zhou, K., Yang, K., Li, F., Chen, G., Liu, Z., Dai, H., and Wang, Q., Biomaterials, 2013, vol. 34, no. 14, p. 3639. doi Google Scholar
  10. 10.
    Li, C., Zhang, Y., Wang, M., Zhang, Y., Chen, G., Li, L., Wu, D., and Wang, Q., Biomaterials, 2014, vol. 35, no. 1, p. 393. doi Google Scholar
  11. 11.
    Korneeva, E.V., Loseva, O.V., Smolentsev, A.I., and Ivanov, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 8, p. 1681. doi Google Scholar
  12. 12.
    Korneeva, E.V., Smolentsev, A.I., Antzutkin, O.N., and Ivanov, A.V., Russ. Chem. Bull., 2019, vol. 68, no. 1, p. 40. doi Google Scholar
  13. 13.
    Anacker-Eickhoff, H., Hesse, R., Jennische, P., and Wahlberg, A., Acta Chem. Scand. (A), 1982, vol. 36, no. 3, p. 251. doi Google Scholar
  14. 14.
    Song, Y.-W., Yu, Z., and Zhang, Q.-F., Acta Crystallogr. (C), 2006, vol. 62, no. 5, p. m214. doi Google Scholar
  15. 15.
    Yin, X., Xie, M.-B., Zhang, W.-G., and Fan, J., Acta Crystallogr. (E), 2007, vol. 63, no. 9, p. m2273. doi Google Scholar
  16. 16.
    Hesse, R., Acta Crystallogr., 1960, vol. 13, no. 12, p. 1025. doi Google Scholar
  17. 17.
    Yamaguchi, H., Kido, A., Uechi, T., and Yasukouchi, K., Bull. Chem. Soc. Jpn., 1976, vol. 49, no. 5, p. 1271. doi Google Scholar
  18. 18.
    Hesse, R. and Nilson, L., Acta Chem. Scand., 1969, vol. 23, no. 3, p. 825. doi Google Scholar
  19. 19.
    Yin, X., Xie, M.-B., Zhang, W.-G., Fan, J., and Zeller, M., Acta Crystallogr. (E), 2007, vol. 63, no. 8, p. m2063. doi Google Scholar
  20. 20.
    Zhang, W.-G., Zhong, Y., Tan, M.Y., Liu, W.-S., and Su, C.-Y., Chin. J. Chem., 2002, vol. 20, no. 5, p. 420. doi Google Scholar
  21. 21.
    Jennische, P. and Hesse, R., Acta Chem. Scand., 1971, vol. 25, no. 2, p. 423. doi Google Scholar
  22. 22.
    Liu, C.W., Liao, P.-K., Fang, C.-S., Saillard, J.-Y., Kahlal, S., and Wang, J.-C., Chem. Commun., 2011, vol. 47, no. 20, p. 5831. doi Google Scholar
  23. 23.
    Wang, Y., Shi, Y.-F., Zou, X.-C., Li, X.-B., Peng, Y., and He, Y.-C., Polyhedron, 2019, vol. 157, p. 321. doi Google Scholar
  24. 24.
    Huang, Z., Lei, X., Hong, M., and Liu, H., Inorg. Chem., 1992, vol. 31, no. 13, p. 2990. doi Google Scholar
  25. 25.
    Zhang, Q.F., Cao, R., Hong, M.C., Su, W.P., and Liu, H.Q., Inorg. Chim. Acta, 1998, vol. 277, no. 2, p. 171. doi Google Scholar
  26. 26.
    Byr’ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.Google Scholar
  27. 27.
    Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK-, YaMR- i mass-spektroskopii v organicheskoi khimii (The Use of UV, IR, NMR, and Mass Spectroscopy in Organic Chemistry), Moscow: Mosk. Gos. Univ., 1979.Google Scholar
  28. 28.
    Gremlih, G.U., Yazyk spektrov. Vvedenie v interpretatsiyu spektrov organicheskikh soedinenii (The Language of the Spectra. Introduction to the Interpretation of the Spectra of Organic Compounds), Moscow: OOO «Bruker Optik», 2002.Google Scholar
  29. 29.
    Pentin, Yu.A. and Vilkov, L.V., Fizicheskie metody issledovaniya v khimii (Physical Research Methods in Chemistry), Moscow: Mir, OOO “Izdatel’stvo AST,” 2006.Google Scholar
  30. 30.
    Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441. doi Google Scholar
  31. 31.
    Bondi, A., J. Phys. Chem., 1966, vol. 70, no. 9, p. 3006. doi Google Scholar
  32. 32.
    Alcock, N.W., Adv. Inorg. Chem. Radiochem., 1972, vol. 15, no. 1, p. 1. doi Google Scholar
  33. 33.
    Winter, M., WebElements Periodic Table of the Elements. (accessed January 2010).
  34. 34.
    Greenwood, N.N. and Earnshaw, A., Chemistry of the Elements, Oxford: Pergamon Press, 1989.Google Scholar
  35. 35.
    Ivanov, A.V., Zinkin, S.A., Gerasimenko, A.V., Antzutkin, O.N., and Forsling, W., Russ. J. Coord. Chem., 2007, vol. 33, no. 1, p. 20. doi Google Scholar
  36. 36.
    Bocian, D.F., Pickett, H.M., Rounds, T.C., and Strauss, H.L., J. Am. Chem. Soc., 1975, vol. 97, no. 4, p. 687. doi Google Scholar
  37. 37.
    Boessenkool, I.K. and Boeyens, J.C.A., J. Cryst. Mol. Struct., 1980, vol. 10, nos. 1–2, p. 11. doi Google Scholar
  38. 38.
    Martínez-Castanön, G.A., Sánchez-Loredo, M.G., Dorantes, H.J., Martínez-Mendoza, J.R., Ortega-Zarzosa, G., and Ruiz, F., Mater. Lett., 2005, vol. 59, no. 4, p. 529. doi Google Scholar
  39. 39.
    Kracek, F.C., Trans. Am. Geophys. Union, 1946, vol. 27, no. 3, p. 364. doi Google Scholar
  40. 40.
    Bruker, APEX2. Bruker AXS Inc., Madison, Wisconsin, USA, 2010.Google Scholar
  41. 41.
    Bruker, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2010.Google Scholar
  42. 42.
    Sheldrick, G.M., Acta Crystallogr. (A), 2008, vol. 64, no. 1, p. 112. doi Google Scholar
  43. 43.
    Loseva, O.V., Rodina, T.A., Ivanov, A.V., Lutsenko, I.A., Korneeva, E.V., Gerasimenko, A.V., and Smolentsev, A.I., Russ. J. Coord. Chem. 2018, vol. 44, no. 10, p. 604. doi Google Scholar
  44. 44.
    Ivanov, A.V., Ivakhnenko, E.V., and Gerasimenko, A.V., Forsling, W., Russ. J. Inorg. Chem., 2003, vol. 48, no. 1, p. 45.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Korneeva
    • 1
  • A. V. Ivanov
    • 1
    Email author
  • A. V. Gerasimenko
    • 2
  • O. V. Loseva
    • 1
  • E. V. Novikova
    • 1
  • M. A. Ivanov
    • 1
  1. 1.Institute of Geology and Nature ManagementFar Eastern Branch of the Russian Academy of SciencesBlagoveschenskRussia
  2. 2.Institute of ChemistryFar Eastern Branch of the Russian Academy of SciencesVladivostokRussia

Personalised recommendations