Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 7, pp 1545–1548 | Cite as

Synthesis of 1-Naphthylacetylene Sulfides from 4-(1-Naphthyl)-1,2,3-thiadiazole

  • M. Yekhlef
  • M. L. PetrovEmail author
  • L. M. Pevzner
  • E. K. Aleksandrova
Letters to the Editor
  • 19 Downloads

Abstract

4-(1-Naphthyl)-1,2,3-thiadiazole is readily decomposed under the action of potassium tert-butylate with the release of nitrogen and the formation of potassium 2-(1-naphthyl)ethynylthiolate. Upon further treatment of the reaction mixture with excess of alkyl halide, the corresponding alkyl 2-(1-naphthyl)-1-ethynylsulfides have been obtained. In the case of the reaction with allyl bromide, the resulting sulfide has undergone rearrangement. A mixture of Z- and E-isomers of 2-(1-naphthyl)-1-ethynyl-1-propenylsulfide has been obtained as the product of allylic rearrangement instead of the expected product of the thio-Claisen rearrangement.

Keywords

naphthalene 1,2,3-thiadiazole acetylene sulfides alkylation rearrangement 

Notes

Funding

This study was financially supported by Ministry of Education and Science of the Russian Federation in the scope of state project no 4.5554.2017/19 using the equipment of the Engineering Center of St. Petersburg State Technological Institute.

References

  1. 1.
    Feldman, K.S., Ruckle, R.E., Ensel, S.N., and Weinreb, P.H., Tetrahedron Lett., 1992, vol. 33, no. 47, p. 7101. doi  https://doi.org/10.1016/50040-4039(00)60846-8 CrossRefGoogle Scholar
  2. 2.
    Ni, Z., Wang, S., Mao, H., and Pan, Y., Tetrahedron Lett., 2012, vol. 53, no. 30, p. 3907. doi  https://doi.org/10.1016/j.tetlet.2012.05.072 CrossRefGoogle Scholar
  3. 3.
    Brachet, E., Brion, J.-D., Alami, M., and Messaondi, S., Chem. Eur. J., 2013, vol. 19, no. 45, p. 15276. doi  https://doi.org/10.1002/chem.201302999 CrossRefGoogle Scholar
  4. 4.
    Zhu, S.-Q., Xu, X.-H., and Qing, F.-L., Eur, J. Org. Chem., 2014, no. 21, p. 4453. doi  https://doi.org/10.1002/ejoc.201402533
  5. 5.
    Chem, C., Chu, L., and Quing, F.-L., J. Am. Chem. Soc., 2012, vol. 134, no. 30, p. 12454. doi  https://doi.org/10.1021/ja305801m CrossRefGoogle Scholar
  6. 6.
    Yekhlef, M., Petrov, M.L., and Pevzner, L.M., Russ. J. Gen. Chem., 2016, vol. 86, no. 7, p. 1762. doi  https://doi.org/10.1134/S1070363216070379 CrossRefGoogle Scholar
  7. 7.
    Petrov, M.L. and Belyakov, A.V., Tetrahedron Lett., 2003, vol. 44, no. 3, p. 599. doi  https://doi.org/10.1016/S0040-4039(02)02576-5 CrossRefGoogle Scholar
  8. 8.
    Sukhai, R.S. and Brandsma, L., Rec. Trav. Chim. Pays-Bas., 1979, vol. 98, no. 2, p. 55. doi  https://doi.org/10.1002/recl.19790980207 CrossRefGoogle Scholar
  9. 9.
    Schaumann, E. and Grabley, F.-F., Lieb. Ann. Chem., 1979, no. 11, p. 1746. doi  https://doi.org/10.1002/jlac.197919791113

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. Yekhlef
    • 1
  • M. L. Petrov
    • 2
    Email author
  • L. M. Pevzner
    • 2
  • E. K. Aleksandrova
    • 2
  1. 1.University of JijelJijelAlgeria
  2. 2.St. Petersburg State Institute of TechnologyTechnical UniversitySt. PetersburgRussia

Personalised recommendations