Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 7, pp 1513–1518 | Cite as

Symmetrical Fatty Dialkyl Carbonates as Potential Green Phase Change Materials: Synthesis and Characterisation

  • N. N. TungEmail author
  • T. T. Hung
  • N. Q. Trung
  • L. T. Giang
Article
  • 6 Downloads

Abstract

Symmetrical fatty dialkyl carbonates make a group of chemicals that has great potential for applications as phase change materials (PCMs). In this study, various parameters affecting synthesis of these carbonates are studied on laboratory scale, which includes: reactants ratio, reaction temperature and time, and the amount of catalyst used. Structures of the desired products are identified using FTIR and NMR spectroscopy. Differential scanning calorimetry (DSC) analysis is used for determining potential of the synthesized symmetrical fatty dialkyl carbonates as PCMs for energy-saving applications.

Keywords

symmetrical dialkyl carbonate dialkyl carbonate transesterification phase change material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

We are grateful to the Vietnam Academy of Science and Technology (VAST) for financial support under scientific research project: CT0000.01/18-19 and TDPCCC.05/18-20.

References

  1. 1.
    Baetens, R., Jelle, B.P., and Gustavsen, A., Energ. Buildings, 2010, vol. 42, p. 1361. doi  https://doi.org/10.1016/j.enbuild.2010.03.026 CrossRefGoogle Scholar
  2. 2.
    Dincer, I. and Rosen, M., Thermal Energy Storage (TES) Methods, in book Thermal Energy Storage: Systems and Applications, New York: John Wiley & Sons, 2010, 2 ed., p. 83. doi  https://doi.org/10.1002/9780470970751.ch3 CrossRefGoogle Scholar
  3. 3.
    Fleischer, A.S., Thermal Energy Storage Using Phase Change Materials, Cham: Springer, 2015. doi  https://doi.org/10.1007/978-3-319-20922-7 CrossRefGoogle Scholar
  4. 4.
    Kośny, J., PCM-Enhanced Building Components, Manchester: Springer, 2015. doi  https://doi.org/10.1007/978-3-319-14286-9 Google Scholar
  5. 5.
    Cheng, W., Xie, B., Zhang, R., Xu, Z., and Xia, Y., Appl. Energ., 2015, vol. 144, p. 10. doi  https://doi.org/10.1016/j.apenergy.2015.01.055 CrossRefGoogle Scholar
  6. 6.
    Kondo, T. and Iwamoto, S., Proc. of the X Int. Conf. Therm. Energ. Storage ECOSTOCK 2006 “Research on Thermal Storage using Rock Wool PCM Ceiling Board”, New Jersey, 2006, p. 59.Google Scholar
  7. 7.
    Prieto, C., Cooper, P., Fernández, A.I., and Cabeza, L.F., Renew. Sust. Energ. Rev., 2016, vol. 60, p. 909. doi  https://doi.org/10.1016/j.rser.2015.12.364 CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Wang, S., Wang, J., and Yang, R., Energ. Buildings, 2014, vol. 77, p. 11. doi  https://doi.org/10.1016/j.enbuild.2014.03.036 CrossRefGoogle Scholar
  9. 9.
    Zhang, Y. P., Lin, K. P., Yang, R., Di, H. F., and Jiang, Y., Energ. Buildings, 2006, vol. 38, p. 1262. doi  https://doi.org/10.1016/j.enbuild.2006.02.009 CrossRefGoogle Scholar
  10. 10.
    Zhou, D., Zhao, C.Y., and Tian, Y., Appl. Energ., 2012, vol. 92, p. 593. doi  https://doi.org/10.1016/j.apenergy.2011.08.025 CrossRefGoogle Scholar
  11. 11.
    Yuan, Y., Zhang, N., Tao, W., Cao, X., and He, Y., Renew. Sust. Energ. Rev., 2014, vol. 29, p. 482. doi  https://doi.org/10.1016/j.rser.2013.08.107 CrossRefGoogle Scholar
  12. 12.
    Kant, K., Shukla, A., and Sharma, A., Energy Reports, 2016, vol. 2, p. 274. doi  https://doi.org/10.1016/j.egyr.2016.10.002 CrossRefGoogle Scholar
  13. 13.
    Rozanna, D., Chuah, T.G., Salmiah, A., Choong, T.S.Y., and Sa’ari, M., Int. J. Green Energ., 2005, vol. 1, p. 495. doi  https://doi.org/10.1081/GE-200038722 CrossRefGoogle Scholar
  14. 14.
    Németh, B., Németh, Á.S., Ujhidy, A., Tóth, J., Trif, L., Gyenis, J., and Feczkó, T., Sol. Energ., 2018, vol. 170, p. 314. doi  https://doi.org/10.1016/j.solener.2018.05.066 CrossRefGoogle Scholar
  15. 15.
    Kenar, J. A., Sol. Energ. Mat. Sol. C., 2010, vol. 94, p. 1697. doi  https://doi.org/10.1016/j.solmat.2010.05.031 CrossRefGoogle Scholar
  16. 16.
    Kenar, J.A., Eur. J. Lipid Sci. Tech., 2012, vol. 114, p. 63. doi  https://doi.org/10.1002/ejlt.201100043 CrossRefGoogle Scholar
  17. 17.
    Shaikh, A.A.G. and Sivaram, S., Ind. Eng. Chem. Res., 1992, vol. 31, p. 1167. doi  https://doi.org/10.1021/ie00004a028 CrossRefGoogle Scholar
  18. 18.
    Kenar, J.A., Knothe, G., and Copes, A.L., J. Am. Oil Chem. Soc., 2004, vol. 81, p. 285. doi  https://doi.org/10.1007/s11746-004-0897-4 CrossRefGoogle Scholar
  19. 19.
    Kreutzberger, C.B., Chloroformates and Carbonates, in Kirk-Othmer Encyclopedia of Chemical Technology, New York: John Wiley & Sons, 2001, vol. 6, p. 290. doi  https://doi.org/10.1002/0471238961.0301180204011312.a01.pub2 Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. N. Tung
    • 1
    Email author
  • T. T. Hung
    • 1
  • N. Q. Trung
    • 1
  • L. T. Giang
    • 2
  1. 1.Center for Research and Technology TransferVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Vietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations