Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 7, pp 1451–1476 | Cite as

Surface-Modified Oxide Nanoparticles: Synthesis and Application

  • A. Yu. OleninEmail author
  • G. V. Lisichkin
Article
  • 14 Downloads

Abstract

This review deals with one of the most important classes of nanomaterials — oxide nanoparticles. Preparative methods for the synthesis of nanooxides, their hydro- and organosols, and methods for the chemical surface modification of oxide nanoparticles are comprehensively reviewed. The high surface area of nanooxide particles and their relatively low porosity allows efficient modification of the surface to obtain highly selective sorbents, microheterogeneous catalysts, biocompatible magnetic and fluorescent labels, means of drug delivery or removal of harmful components from living systems, and objects of environmental monitoring.

Keywords

oxide nanoparticles surface chemical modification sorbents catalysts magnetic labels fluorescent labels targeted drug delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shlyakhtin, O.A., Adv. Polym. Sci., 2014, vol. 263, p. 223. doi  https://doi.org/10.1007/978-3-319-05846-7_6 CrossRefGoogle Scholar
  2. 2.
    Majidi, S., Sehrig, F.Z., Farkhani, S.M., Goloujeh, M.S., and Akbarzadeh, A., Art. Cell Nanomed. Biotechnol., 2016, vol. 44, no. 2, p. 722. doi  https://doi.org/10.3109/21691401.2014.982802 CrossRefGoogle Scholar
  3. 3.
    Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Russ. Chem. Rev., 2005, vol. 74, no. 6, p. 489. doi  https://doi.org/10.1070/RC2005v074n06ABEH000897 CrossRefGoogle Scholar
  4. 4.
    Hosokawa, S., J. Ceram. Soc. Japan., 2016, vol. 124, no. 9, p. 870. doi  https://doi.org/10.2109/jcersj2.16109 CrossRefGoogle Scholar
  5. 5.
    Dunne, P.W., Lester, E., Starkey, C., Clark, I., Chen, Y., and Munn, A.S., Green Chem. Ser., 2018, no. 57, p. 449. doi  https://doi.org/10.1039/9781788013543-00449.
  6. 6.
    Lee, E. and Kwon, Y.U., Ultrason. Sonochem., 2016, vol. 29, p. 401. doi  https://doi.org/10.1016/j.ultsonch.2015.10.013 CrossRefPubMedGoogle Scholar
  7. 7.
    Caricato, A.P., Luches, A., and Martino, M., in Handbook of Nanoparticles Aliofkhazraei, M., Ed., Elsevier, 2015, p. 407. doi  https://doi.org/10.1007/978-3-319-15338-421
  8. 8.
    Koshizaki, N. and Ishikawa, Y., in Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials, Pan Stanford Publishing Pte. Ltd., 2012, p. 479. doi  https://doi.org/10.4032/9789814241526
  9. 9.
    Diab, R., Canilho, N., Pavel, I.A., Haffner, F.B., Girardon, M., and Pasc, A., Adv. Colloid Interface Sci., 2017, vol. 249, p. 346. doi  https://doi.org/10.1016/j.cis.2017.04.005 CrossRefPubMedGoogle Scholar
  10. 10.
    Tabesh, S., Davar, F., and Loghman-Estarki, M.R., J. Alloys Compd., 2018, vol. 730, p. 441. doi  https://doi.org/10.1016/j.jallcom.2017.09.246 CrossRefGoogle Scholar
  11. 11.
    Hosseini, M.M., Kolvari, E., Zolfagharinia, S., and Hamzeh, M., J. Iran. Chem. Soc., 2017, vol. 14, no. 8, p. 1777. doi  https://doi.org/10.1007/s13738-017-1118-9 CrossRefGoogle Scholar
  12. 12.
    Scholz, S. and Kaskel, S., J. Colloid Interface Sci., 2008, vol. 323, no. 1, p. 84. doi  https://doi.org/10.1016/j.jcis.2008.03.051 CrossRefPubMedGoogle Scholar
  13. 13.
    Fedotcheva, T.A., Olenin, A.Yu., Starostin, K.M., Lisichkin, G.V., Banin, V.V., and Shimanovskii, N.L., Pharm. Chem. J., 2015, vol. 49, no. 4, p. 220. doi  https://doi.org/10.1007/s11094-015-1260-6 CrossRefGoogle Scholar
  14. 14.
    Gobbo, O.L., Sjaastad, K., Radomski, M.W., Volkov, Y., and Prina-Mello, A., Theranostics., 2015, vol. 5, no. 11, p. 1249. doi  https://doi.org/10.7150/thno.11544 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sharm, V., J. Sol-Gel Sci. Technol., 2017, vol. 84, no. 2, p. 231. doi  https://doi.org/10.1007/s10971-017-4507-8 CrossRefGoogle Scholar
  16. 16.
    Das, S. and Jayaraman, V.S., Progr. Mater. Sci., 2014, vol. 66, p. 112. doi  https://doi.org/10.1016/j.pmatsci.2014.06.003 CrossRefGoogle Scholar
  17. 17.
    Ivanov, V.K., Shcherbakov, A.B., and Usatenko, A.V., Russ. Chem. Rev., 2009, vol. 78, no. 9, p. 855. doi  https://doi.org/10.1070/RC2009v078n09ABEH004058 CrossRefGoogle Scholar
  18. 18.
    Cai, X. and McGinnis, J.F., Adv. Exp. Med. Biol., 2016, vol. 854, p. 111. doi  https://doi.org/10.1007/978-3-319-17121-0_16 CrossRefPubMedGoogle Scholar
  19. 19.
    Gongalsky, M.B., Osminkina, L.A., Pereira, A., Manankov, A.A., Fedorenko, A.A., Vasiliev, A.N., Solovyev, V.V., Kudryavtsev, A.A., Sentis, M., Kabashin, A.V., and Timoshenko, V.Yu., Sci. Rep., 2016, vol. 6, no. 24732, p. 1. doi  https://doi.org/10.1038/srep24732 Google Scholar
  20. 20.
    Liu, K., Bai, Y., Zhang, L., Yang, Z., Fan, Q., Zheng, H., Yin, Y., and Gao, C., Nano Lett., 2016, vol. 16, no. 6, p. 3675. doi  https://doi.org/10.1021/acs.nanolett.6b00868 CrossRefPubMedGoogle Scholar
  21. 21.
    Lukowiak, A., Gerasymchuk, Y., Strek, W., Borak, B., Chiappini, A., Chiasera, A., Armellini, C., Ferrari, M., and Taccheo, S., Proc. SPIE, 2018, vol. 10683. Art. 106830M. doi  https://doi.org/10.1117/12.2314734
  22. 22.
    Ab Rahman, I. and Padavettan, V., J. Nanomater., 2012, vol. 2012. Art. 132424. doi  https://doi.org/10.1155/2012/132424
  23. 23.
    Zou, H., Wu, S., and Shen, J., Chem. Rev., 2008, vol. 108, no. 9, p. 3893. doi  https://doi.org/10.1021/cr068035q CrossRefPubMedGoogle Scholar
  24. 24.
    Barczak, M., McDonagh, C., and Wencel, D., Microchim. Acta, 2016, vol. 183, no. 7, p. 2085. doi  https://doi.org/10.1007/s00604-016-1863-y CrossRefGoogle Scholar
  25. 25.
    Hakami, O., Zhang, Y., and Banks, C.J., Water Res., 2012, vol. 46, no. 12, p. 3913. doi  https://doi.org/10.1016/j.watres.2012.04.032 CrossRefPubMedGoogle Scholar
  26. 26.
    Li, G., Zhao, Z., Liu, J., and Jiang, G., J. Hazard. Mater., 2011, vol. 192, no. 1, p. 277. doi  https://doi.org/10.1016/j.jhazmat.2011.05.015 PubMedGoogle Scholar
  27. 27.
    Huang, C. and Hu, B., Spectrochim. Acta (B), 2008, vol. 63, no. 3, p. 437. doi  https://doi.org/10.1016/j.sab.2007.12.010 CrossRefGoogle Scholar
  28. 28.
    Shimizu, F.M., Pasqualeti, A.M., Todão, F.R., de Oliveira, J.F.A., Vieira, L.C.S., Gonçalves, S.P.C., da Silva, G.H., Cardoso, M.B., Gobbi, A.L., Martinez, D.S.T., Oliveira, O.N. Jr., and Lima, R.S., ACS Sens., 2018, vol. 3, no. 3, p. 716. doi  https://doi.org/10.1021/acssensors.8b00056 CrossRefPubMedGoogle Scholar
  29. 29.
    Guo, Q., Yang, G., Huang, D., Cao, W., Ge, L., and Li, L., Colloid Polym. Sci., 2018, vol. 296, no. 2, p. 379. doi  https://doi.org/10.1007/s00396-017-4260-0 CrossRefGoogle Scholar
  30. 30.
    Hübner, C., Fettkenhauer, C., Voges, K., and Lupascu, D.C., Langmuir, 2018, vol. 34, no. 1, p. 376. doi  https://doi.org/10.1021/acs.langmuir.7b03753 CrossRefPubMedGoogle Scholar
  31. 31.
    Koltsov, I., Smalc-Koziorowska, J., Przésniak-Welenc, M., Marysa, M., Kimmel, G., McGlynn, J., Ganin, A., and Stelmakh, S., Materials, 2018, vol. 11, no. 5. Art. 829. doi  https://doi.org/10.3390/ma11050829
  32. 32.
    Hosseinzadeh-Khanmiri, R., Kamel, Y., Keshvari, Z., Mobaraki, A., Shahverdizadeh, G.H., Vessally, E., and Babazadeh, M., Appl. Organomet. Chem., 2018, vol. 32, no. 9. Art. e4452. doi  https://doi.org/10.1002/aoc.4452
  33. 33.
    Cîrcu, M., Radu, T., Porav, A.S., and Turcu, R., Appl. Surf. Sci., 2018, vol. 453, p. 457. doi  https://doi.org/10.1016/j.apsusc.2018.05.096 CrossRefGoogle Scholar
  34. 34.
    Karimi, M., Ghandi, L., Saberi, D., and Heydari, A., New J. Chem., 2018, vol. 42, no. 5, p. 3900. doi  https://doi.org/10.1039/c7nj02257c CrossRefGoogle Scholar
  35. 35.
    Jouyandeh, M., Paran, S.M.R., Shabanian, M., Ghiyasi, S., Vahabi, H., Badawi, M., Formela, K., Puglia, D., and Saeb, M.R., Progr. Org. Coat., 2018, vol. 123, p. 10. doi  https://doi.org/10.1016/j.porgcoat.2018.06.006 CrossRefGoogle Scholar
  36. 36.
    Magdalena, A.G., Silva, I.M.B., Marques, R.F.C., Pi-pi, A.R.F., Lisboa-Filho, P.N., and Jafelicci, M. Jr., J. Phys. Chem. Solids, 2018, vol. 113, p. 5. doi  https://doi.org/10.1016/j.jpcs.2017.10.002 CrossRefGoogle Scholar
  37. 37.
    Shah, S.T., Yehye, W.A., Saad, O., Simarani, K., Chowdhury, Z.Z., Alhadi, A.A., and Al-Ani, L.A., Nanomaterials, 2017, vol. 7, no. 10. Art. 306. doi  https://doi.org/10.3390/nano7100306
  38. 38.
    Enache, D.F., Vasile, E., Simonescu, C.M., Răzvan, A., Nicolescu, A., Nechifor, A.C., Oprea, O., Pătescu, R.E., Onose, C., and Dumitru, F., J. Solid State Chem., 2017, vol. 253, p. 318. doi  https://doi.org/10.1016/j.jssc.2017.06.013 CrossRefGoogle Scholar
  39. 39.
    Wang, B., Wu, P., Yokel, R.A., and Grulke, E.A., Appl. Surf. Sci., 2012, vol. 258, no. 14, p. 5332. doi  https://doi.org/10.1016/j.apsusc.2012.01.142 CrossRefGoogle Scholar
  40. 40.
    Tunusoğlu, Ö. and Demir, M.M., Ind. Eng. Chem. Res., 2013, vol. 52, no. 37, p. 13401. doi  https://doi.org/10.1021/ie401872y CrossRefGoogle Scholar
  41. 41.
    Huang, X., Wang, B., Grulke, E.A., and Beck, M.J., J. Chem. Phys., 2014, vol. 140, no. 7. Art. 074703. doi  https://doi.org/10.1063/1.4864378
  42. 42.
    Luo, K., Zhou, S., Wu, L., and Gu, G., Langmuir, 2008, vol. 24, no. 20, p. 11497. doi  https://doi.org/10.1021/la801943n CrossRefPubMedGoogle Scholar
  43. 43.
    Zhou, S., Garnweitner, G., Niederberger, M., and Antonietti, M., Langmuir, 2007, vol. 23, no. 18, p. 9178. doi  https://doi.org/10.1021/la700837u CrossRefPubMedGoogle Scholar
  44. 44.
    Datta, A., Dasgupta, S., and Mukherjee, S., J. Nanopart. Res., 2017, vol. 19, no. 4. Art. 142. doi  https://doi.org/10.1007/s11051-017-3835-5
  45. 45.
    Lee, H.S., Park, J.M., Hwang, K.H., and Lim, H.M., Mater. Sci. Forum., 2018, vol. 922, p. 20. doi  https://doi.org/10.4028/www.scientific.net/MSF.922.20 CrossRefGoogle Scholar
  46. 46.
    Tong, M., Yu, J., Song, J., and Qi, R., J. Appl. Polym. Sci., 2013, vol. 130, no. 4, p. 2320. doi  https://doi.org/10.1002/app.39403 CrossRefGoogle Scholar
  47. 47.
    Singh, L.P., Bhattacharyya, S.K., Kumar, R., Mishra, G., Sharma, U., Singh, G., and Ahalawat, S., Adv. Colloid Interface Sci., 2014, vol. 214, p. 17. doi  https://doi.org/10.1016/j.cis.2014.10.007 CrossRefPubMedGoogle Scholar
  48. 48.
    Cargnello, M., Gordon, T.R., and Murray, C.B., Chem. Rev., 2014, vol. 114, no. 19, p. 9319. doi  https://doi.org/10.1021/cr500170p CrossRefPubMedGoogle Scholar
  49. 49.
    Finnie, K.S., Bartlett, J.R., Barbe, C.J.A., and Kong, L., Langmuir, 2007, vol. 23, no. 6, p. 3017. doi  https://doi.org/10.1021/la0624283 CrossRefPubMedGoogle Scholar
  50. 50.
    Bredereck, K., Effenberger, F., and Tretter, M., J. Colloid Interface Sci., 2011, vol. 360, no. 2, p. 408. doi  https://doi.org/10.1016/j.jcis.2011.04.062 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang, T., Xu, G., Puckette, J., and Blum, F.D., J. Phys. Chem. (C), 2012, vol. 116, no. 21, p. 11626. doi  https://doi.org/10.1021/jp303338t CrossRefGoogle Scholar
  52. 52.
    Mehan, S., Aswal, V.K., and Kohlbrecher, J., Langmuir, 2014, vol. 30, no. 33, p. 9941. doi  https://doi.org/10.1021/la502410v CrossRefPubMedGoogle Scholar
  53. 53.
    Mekawy, M.M., Yamaguchi, A., El-Safty, S.A., Itoh, T., and Teramae, N., J. Colloid Interface Sci., 2011, vol. 355, no. 2, p. 348. doi  https://doi.org/10.1016/j.jcis.2010.11.056 CrossRefPubMedGoogle Scholar
  54. 54.
    Mendez-Gonzalez, D., Alonso-Cristobal, P., Lopez-Cabarcos, E., and Rubio-Retama, J., Eur. Polym. J., 2016, vol. 75, no. 11, p. 363. doi  https://doi.org/10.1016/j.eurpolymj.2016.01.013 CrossRefGoogle Scholar
  55. 55.
    Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., and Li, G., J. Am. Chem. Soc., 2004, vol. 126, no. 1, p. 273. doi  https://doi.org/10.1021/ja0380852 CrossRefPubMedGoogle Scholar
  56. 56.
    Shin, K.S., Cho, Y.K., Choi, J.Y., and Kim, K., Appl. Catal. (A), 2012, vols. 413–414, p. 170. doi  https://doi.org/10.1016/j.apcata.2011.11.006 CrossRefGoogle Scholar
  57. 57.
    Baaziz, W., Pichon, B.P., Fleutot, S., Liu, Y., Lefevre, C., Greneche, J.M., Toumi, M., Mhiri, T., and Begin-Colin, S., J. Phys. Chem. (C), 2014, vol. 118, no. 7, p. 3795. doi  https://doi.org/10.1021/jp411481p CrossRefGoogle Scholar
  58. 58.
    Cozzoli, P.D., Kornowski, A., and Weller, H., J. Am. Chem. Soc., 2003, vol. 125, no. 47, p. 14539. doi  https://doi.org/10.1021/ja036505h CrossRefPubMedGoogle Scholar
  59. 59.
    Francois, N., Ginzberg, B., and Bilmes, S.A., J. SolGel Sci. Technol., 1998, vol. 13, nos. 1–3, p. 341. doi  https://doi.org/10.1023/A:1008628327995 CrossRefGoogle Scholar
  60. 60.
    Choi, H., Stathatos, E., and Dionysiou, D.D., Top. Catal., 2007, vol. 44, no. 4, p. 513. doi  https://doi.org/10.1007/s11244-006-0099-1 CrossRefGoogle Scholar
  61. 61.
    Sliem, M.A., Schmidt, D.A., Bétard, A., Kalidindi, S.B., Gross, S., Havenith, M., Devi, A., and Fischer, R.A., Chem. Mater., 2012, vol. 24, no. 22, p. 4274. doi  https://doi.org/10.1021/cm301128a CrossRefGoogle Scholar
  62. 62.
    Krishnan, A., Sreeremya, T.S., and Ghosh, S., RSC Adv., 2016, vol. 6, no. 58, p. 53550. doi  https://doi.org/10.1039/c6ra07504e CrossRefGoogle Scholar
  63. 63.
    Samuel, J., Raccurt, O., Mancini, C., Dujardin, C., Amans, D., Ledoux, G., Poncelet, O., and Tillement, O., J. Nanopart. Res., 2011, vol. 13, no. 6, p. 2417. doi  https://doi.org/10.1007/s11051-010-0129-6 CrossRefGoogle Scholar
  64. 64.
    Suganthi, K.S. and Rajan, K.S., Renew. Sustain. Energ. Rev., 2017, vol. 76, p. 226. doi  https://doi.org/10.1016/j.rser.2017.03.043 CrossRefGoogle Scholar
  65. 65.
    Cushing, B.L., Kolesnichenko, V.L., and O’Connor, C.J., Chem. Rev., 2004, vol. 104, no. 9, p. 3893. doi  https://doi.org/10.1021/cr030027b CrossRefPubMedGoogle Scholar
  66. 66.
    Kaasgaard, T. and Drummond, C.J., Phys. Chem. Chem. Phys., 2006, vol. 8, no. 43, p. 4957. doi  https://doi.org/10.1039/b609510k CrossRefPubMedGoogle Scholar
  67. 67.
    Khadzhiev, S.N., Kadiev, K.M., Yampolskaya, G.P., and Kadieva, M.Kh., Adv. Colloid Interface Sci., 2013, vols. 197–198, p. 132. doi  https://doi.org/10.1016/j.cis.2013.05.003 CrossRefPubMedGoogle Scholar
  68. 68.
    Husein, M.M. and Nassar, N.N., Curr. Nanosci., 2008, vol. 4, no. 4, p. 370. doi  https://doi.org/10.2174/157341308786306116 CrossRefGoogle Scholar
  69. 69.
    Heinz, H., Pramanik, C., Heinz, O., Ding, Y., Mishra, R.K., Marchon, D., Flatt, R.J., Estrela-Lopis, I., Llop, J., Moya, S., and Ziolo, R.F., Surf. Sci. Rep., 2017, vol. 72, no. 1, p. 1. doi  https://doi.org/10.1016/j.surfrep.2017.02.001 CrossRefGoogle Scholar
  70. 70.
    Ramimoghadam, D., Bagheri, S., and Hamid, S.B.A., Coll. Surf. (B), 2015, vol. 133, p. 388. doi  https://doi.org/10.1016/j.colsurfb.2015.02.003 CrossRefGoogle Scholar
  71. 71.
    Nam, J., Won, N., Bang, J., Jin, H., Park, J., Jung Sungwook, Jung Sanghwa, Park, Y., and Kim, S., Adv. Drug Deliv. Rev., 2013, vol. 65, no. 5, p. 622. doi  https://doi.org/10.1016/j.addr.2012.08.015 CrossRefPubMedGoogle Scholar
  72. 72.
    Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Lisichkin, G.V., Ed., Moscow: Fizmatlit, 2003.Google Scholar
  73. 73.
    Khabibullin, A., Bhangaonkar, K., Mahoney, C., Lu, Z., Schmitt, M., Sekizkardes, A.K., Bockstaller, M.R., and Matyjaszewski, K., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 8, p. 5458. doi  https://doi.org/10.1021/acsami.5b12311 CrossRefPubMedGoogle Scholar
  74. 74.
    Tudose, M., Culita, D.C., Musuc, A.M., Somacescu, S., Ghic, C., Chifiriuc, M.C., and Bleotu, C., Mater. Sci. Eng. (C), 2017, vol. 79, p. 499. doi  https://doi.org/10.1016/j.msec.2017.05.083 CrossRefGoogle Scholar
  75. 75.
    Gawali, S.L., Barick, B.K., Barick, K.C., and Hassan, P.A., J. Alloys Compd., 2017, vol. 725, p. 800. doi  https://doi.org/10.1016/j.jallcom.2017.07.206 CrossRefGoogle Scholar
  76. 76.
    Bagherpour, A.R., Kashanian, F., Ebrahimi, S.A.S., and Habibi-Rezaei, M., Nanotechnology, 2018, vol. 29, no. 7. Art. 075706. doi  https://doi.org/10.1088/1361-6528/aaa2b5
  77. 77.
    Tunusŏglu Ö., Muñoz-Espi, R., Akbey Ü., and Demir, M.M., Colloids Surf. (A), 2012, vol. 395, p. 10. doi  https://doi.org/10.1016/j.colsurfa.2011.11.026 CrossRefGoogle Scholar
  78. 78.
    Shi, J., Yang, D., Jiang, Z., Jiang, Y., Liang, Y., Zhu, Y., Wang, X., and Wang, H., J. Nanopart. Res., 2012, vol. 14, no. 9. Art. 1120. doi  https://doi.org/10.1007/s11051-012-1120-1
  79. 79.
    Teleki, A., Bjelobrk, N., and Pratsinis, S.E., Langmuir, 2010, vol. 26, no. 8, p. 5815. doi  https://doi.org/10.1021/la9037149 CrossRefPubMedGoogle Scholar
  80. 80.
    Piskunova, V.S., Novichkov, R.V., and Zuev, B.K., Vestn. Mezhdunar. Univer. “Dubna”, 2018, no. 3, p. 21.Google Scholar
  81. 81.
    Arévalo-Cid, P., Isasi, J., and Martín-Hernández, F., J. Alloys Compd., 2018, vol. 766, p. 609. doi  https://doi.org/10.1016/j.jallcom.2018.06.246 CrossRefGoogle Scholar
  82. 82.
    Masteri-Farahani, M. and Shahsavarifar, S., Appl. Organomet. Chem., 2018, vol. 32, no. 2. Art. e4064. doi  https://doi.org/10.1002/aoc.4064
  83. 83.
    Veisi, H., Vafajoo, S., Bahrami, K., and Mozafari, B., Catal. Lett., 2018, vol. 148, no. 9, p. 2734. doi  https://doi.org/10.1007/s10562-018-2486-1 CrossRefGoogle Scholar
  84. 84.
    Teng, Y., Jiang, C., Ruotolo, A., and Pong, P.W.T., IEEE Trans. Nanotechnol., 2018, vol. 17, no. 1, p. 69. doi  https://doi.org/10.1109/TNANO.2016.2636254 CrossRefGoogle Scholar
  85. 85.
    Fossati, A.B., Alho, M.M., and Jacobo, S.E., Adv. Natur. Sci: Nanosci. Nanotechnol., 2018, vol. 9, no. 1. Art. 015007. doi  https://doi.org/10.1088/2043-6254/aaa6e8
  86. 86.
    Zhang, M., Qiao, J., and Qi, L., Anal. Chim. Acta, 2018, vol. 1035, p. 70. doi  https://doi.org/10.1016/j.aca.2018.07.019 CrossRefPubMedGoogle Scholar
  87. 87.
    Miola, M., Ferraris, S., Pirani, F., Multari, C., Bertone, E., Rožman, K.Ž., Kostevšek, N., and Verné, E., Ceram. Int., 2017, vol. 43, no. 17, p. 15258. doi  https://doi.org/10.1016/j.aca.2018.07.019 CrossRefGoogle Scholar
  88. 88.
    Pombo-García, K., Rühl, C.L., Lam, R., Barreto, J.A., Ang, C.-S., Scammells, P.J., Comba, P., Spiccia, L., Graham, B., Joshi, T., and Stephan, H., ChemPlusChem., 2017, vol. 82, no. 4, p. 638. doi  https://doi.org/10.1002/cplu.201700052 CrossRefGoogle Scholar
  89. 89.
    Rodriguez, A.F.R., Costa, T.P., Bini, R.A., Faria, F.S.E.D.V., Azevedo, R.B., Jafelicci, M., Jr., Coaquira, J.A.H., Martinez, M.A.R., Mantilla, J.C., Marques, R.F.C., and Morais, P.C., Physica (B), 2017, vol. 521, p. 141. doi  https://doi.org/10.1016/j.physb.2017.06.043 CrossRefGoogle Scholar
  90. 90.
    Kunjie, W., Yanping, W., Hongxia, L., Mingliang, L., Deyi, Z., Huixia, F., and Haiyan, F., J. Rare Earths., 2013, vol. 31, no. 7, p. 709. doi  https://doi.org/10.1016/S1002-0721(12)60346-9 CrossRefGoogle Scholar
  91. 91.
    Giaume, D., Poggi, M., Casanova, D., Mialon, G., Lahlil, K., Alexandrou, A., Gacoin, T., and Boilot, J.P., Langmuir, 2008, vol. 24, no. 19, p. 11018. doi  https://doi.org/10.1021/la8015468 CrossRefPubMedGoogle Scholar
  92. 92.
    Klaumünzer, M., Hübner, J., Spitzer, D., and Kryschi, C., ACS Omega, 2017, vol. 2, no. 1, p. 52. doi  https://doi.org/10.1021/acsomega.6b00380 CrossRefGoogle Scholar
  93. 93.
    Rashwan, K. and Sereda, G., ACS Symp. Ser., 2016, vol. 1224, ch. 5, p. 91. doi  https://doi.org/10.1021/bk-2016-1224.ch005 CrossRefGoogle Scholar
  94. 94.
    Fernández, L., Arranz, G., Palacio, L., Soria, C., Sánchez, M., Pérez, G., Lozano, G., Hernández, A., and Prádanos, P., J. Nanopart. Res, 2009, vol. 11, no. 2, p. 341. doi  https://doi.org/10.1007/s11051-008-9409-9 CrossRefGoogle Scholar
  95. 95.
    Prado, L.A.S.A., Sriyai, M., Ghislandi, M., Barros-Timmons, A., and Schulte, K., J. Braz. Chem. Soc., 2010, vol. 21, no. 12, p. 2238. doi  https://doi.org/10.1590/S0103-50532010001200010 CrossRefGoogle Scholar
  96. 96.
    Hojjati, B. and Charpentier, P.A., J. Polym. Sci. (A), 2008, vol. 46, no. 12, p. 3926. doi  https://doi.org/10.1002/pola.22724 CrossRefGoogle Scholar
  97. 97.
    Mallakpour, S. and Ezhieh, A.N., J. Polym. Env., 2018, vol. 26, no. 7, p. 2813. doi  https://doi.org/10.1007/s10924-017-1170-7 CrossRefGoogle Scholar
  98. 98.
    Bugrov, A.N., Zavialova, A.Yu., Smyslov, R.Yu., Anan’eva, T.D., Vlasova, E.N., Mokeev, M.V., Kryukov, A.E., Kopitsa, G.P., and Pipich, V. Luminescence, 2018, vol. 33, no. 5, p. 837. doi  https://doi.org/10.1002/bio.3476 CrossRefPubMedGoogle Scholar
  99. 99.
    Gowenlocka, C.E., McGettrickb, J.D., McNaughterc, P.D., O’Brienc, P., Dunnilla, C.W., and Barrona, A.R., Main Group Chem., 2016, vol. 15, no. 1, p. 1. doi  https://doi.org/10.3233/MGC-150188 CrossRefGoogle Scholar
  100. 100.
    Ali, M.A., Srivastava, S., Mondal, K., Chavhan, P.M., Agrawal, V.V., John, R., Sharma, A., and Malhotra, B.D., Nanoscale, 2014, vol. 6, no. 22, p. 13958. doi  https://doi.org/10.1039/c4nr03791j CrossRefPubMedGoogle Scholar
  101. 101.
    Li, H., Yan, Y., Liu, B., Chen, W., and Chen, S., Powder Technol., 2007, vol. 178, no. 3, p. 203. doi  https://doi.org/10.1016/j.powtec.2007.04.020 CrossRefGoogle Scholar
  102. 102.
    Kol’tsov, S.I., Zh. Prikl. Khim., 1969, vol. 42, no. 5, p. 1023.Google Scholar
  103. 103.
    Sosnov, E.A., Malkov, A.A., Malygin, A.A., Russ. Chem. Rev, 2010, vol. 79, no. 10, p. 907. doi  https://doi.org/10.1070/RC2010v079n10ABEH004112 CrossRefGoogle Scholar
  104. 104.
    Malygin, A.A., Ross. Khim. Zh., 2013, vol. 57, no. 6, p. 7.Google Scholar
  105. 105.
    Watté, J., van Gompel, W.T.M., Lommens, P.L., de Buysser, K., vand an Driessche, I., ACS Appl. Mater. Interface, 2016, vol. 8, no. 43, p. 29759. doi  https://doi.org/10.1021/acsami.6b08931 CrossRefGoogle Scholar
  106. 106.
    Panwar, K., Jassal, M., and Agrawal, A.K., Appl. Surf. Sci., 2017, vol. 411, p. 368. doi  https://doi.org/10.1016/j.apsusc.2017.03.105 CrossRefGoogle Scholar
  107. 107.
    Guo, Z., Pereira, T., Choi, O., Wang, Y., and Hahn, H.T., J. Mater. Chem., 2006, vol. 16, no. 27, p. 2800. doi  https://doi.org/10.1039/b603020c CrossRefGoogle Scholar
  108. 108.
    Razali, W.A.W., Sreenivasan, V.K.A., Goldys, E.M., and Zvyagin, A.V., Langmuir, 2014, vol. 30, no. 50, p. 15091. doi  https://doi.org/10.1021/la5042629 CrossRefPubMedGoogle Scholar
  109. 109.
    Melnyk, I.V., Pogorilyi, R.P., Zub, Y.L., Vaclavikova, M., Gdula, K., Dąprowski, A., Seisenbaeva, G.A., and Kessler, VG., Sci. Rep., 2018, vol. 8, no. 1. Art. 8592. doi  https://doi.org/10.1038/s41598-018-26767-w
  110. 110.
    Li, L., Guo, R., Li, Y., Guo, M., Wang, X., and Du, X., Anal. Chim. Acta, 2015, vol. 867, p. 38. doi  https://doi.org/10.1016/j.aca.2015.01.038 CrossRefPubMedGoogle Scholar
  111. 111.
    Toiserkani, H., Coll. Polym. Sci., 2015, vol. 293, no. 10, p. 2911 doi  https://doi.org/10.1007/s00396-015-3691-8 CrossRefGoogle Scholar
  112. 112.
    Qi, L., Sehgal, A., Castaing, J.C., Chapel, J.P., Fresnais, J., Berret, J.F., and Cousin, F., ACS Nano, 2008, vol. 2, no. 5, p. 879. doi  https://doi.org/10.1021/nn700374d CrossRefPubMedGoogle Scholar
  113. 113.
    Meng, C., Zhikun, W., Qiang, L., Chunling, L., Shuangqing, S., and Songqing, H., J. Hazard. Mater., 2018, vol. 341, p. 198. doi  https://doi.org/10.1016/j.jhazmat.2017.07.062 CrossRefPubMedGoogle Scholar
  114. 114.
    Ledwa, K.A. and Kępínski, L., Appl. Surf. Sci., 2017, vol. 400, p. 212. doi  https://doi.org/10.1016/j.apsusc.2016.12.127 CrossRefGoogle Scholar
  115. 115.
    Zhang, Q., Nurumbetov, G., Simula, A., Zhu, C., Li, M., Wilson, P., Kempe, K., Yang, B., Tao, L., and Haddleton, D.M., Polym. Chem., 2016, vol. 7, no. 45, p. 7002. doi  https://doi.org/10.1039/c6py01709f CrossRefGoogle Scholar
  116. 116.
    Zhang, S., Zhang, Y., Liu, J., Xu, Q., Xiao, H., Wang, X., Xu, H., and Zhou, J., Chem. Eng. J., 2013, vol. 226, p. 30. doi  https://doi.org/10.1016/j.cej.2013.04.060 CrossRefGoogle Scholar
  117. 117.
    Wang, H., Zhao, X., Meng, W., Wang, P., Wu, F., Tang, Z., Han, X., and Giesy, J.P., Anal. Chem., 2015, vol. 87, no. 15, p. 7667. doi  https://doi.org/10.1021/acs.analchem.5b01077 CrossRefPubMedGoogle Scholar
  118. 118.
    Ashour, R.M., El-sayed, R., Abdel-Magied, A.F., Abdel-Khalek, A.A., Ali, M.M., Forsberg, K., Uheida, A., Muhammed, M., and Dutta, J., Chem. Eng. J., 2017, vol. 327, p. 286. doi  https://doi.org/10.1016/j.cej.2017.06.101 CrossRefGoogle Scholar
  119. 119.
    Jin, X., Li, K., Ning, P., Bao, S., and Tang, L., Water Air Soil Pollut, 2017, vol. 228, no. 8. Art. 302. doi  https://doi.org/10.1007/s11270-017-3482-6
  120. 120.
    Zhu, S., Leng, Y., Yan, M., Tuo, X., Yang, J., Almásy, L., Tian, Q., Sun, G., Zou, L., Li, Q., Courtois, J., and Zhang, H., Appl. Surf. Sci., 2018, vol. 447, p. 381. doi  https://doi.org/10.1016/j.apsusc.2018.04.016 CrossRefGoogle Scholar
  121. 121.
    Veliscek-Carolan, J., Jolliffe, K.A., and Hanley, T.L., ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 22, p. 11984. doi  https://doi.org/10.1021/am403727x CrossRefPubMedGoogle Scholar
  122. 122.
    Zohreh, N., Hosseini, S.H., Tavakolizadeh, M., Busuioc, C., and Negrea, R., J. Mol. Liq., 2018, vol. 266, p. 393. doi  https://doi.org/10.1016/j.molliq.2018.06.076 CrossRefGoogle Scholar
  123. 123.
    Khodaei, M.M. and Dehghan, M., New J. Chem, 2018, vol. 42, no. 14, p. 11381. doi  https://doi.org/10.1039/c8nj00781k CrossRefGoogle Scholar
  124. 124.
    Miao, C., Yang, L., Wang, Z., Luo, W., Li, H., Lv, P., and Yuan, Z., Fuel, 2018, vol. 224, p. 774. doi  https://doi.org/10.1016/j.fuel.2018.02.149 CrossRefGoogle Scholar
  125. 125.
    Fu, C., Yang, R.M., Wang, L., Li, N.N., Qi, M., Xu, X.D., Wei, X.H., Jiang, X.Q., and Zhang, L.M., RSC Adv., 2017, vol. 7, no. 66, p. 41919. doi  https://doi.org/10.1039/c7ra05042a CrossRefGoogle Scholar
  126. 126.
    Yazici, H., Alpaslan, E., and Webster, T.J., J. Miner., 2015, vol. 67, no. 4, p. 804. doi  https://doi.org/10.1007/s11837-015-1336-5 Google Scholar
  127. 127.
    Tran, P.A., Nguyen, H.T., Fox, K., and Tran, N., Mater. Res. Exp., 2018, vol. 5, no. 3, p. Art. 035051. doi  https://doi.org/10.1088/2053-1591/aab5f3
  128. 128.
    Cano, M., Núñez-Lozano, R., Lumbreras, R., González-Rodríguez, V., Delgado-García, A., Jiménez-Hoyuela, J.M., and de la Cueva-Méndez, G., Nanoscale, 2017, vol. 9, no. 2, p. 812. doi  https://doi.org/10.1039/c6nr07462f CrossRefPubMedGoogle Scholar
  129. 129.
    Li, X., Garamus, V.M., Li, N., Gong, Y., Zhe, Z., Tian, Z., and Zou, A., Coll. Surf. (A), 2018, vol. 548, p. 61. doi  https://doi.org/10.1016/j.colsurfa.2018.03.047 CrossRefGoogle Scholar
  130. 130.
    Orza, A., Wu, H., Xu, Y., Lu, Q., and Mao, Q., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 24, p. 20719. doi  https://doi.org/10.1021/acsami.7b02575 CrossRefPubMedGoogle Scholar
  131. 131.
    Aghanejad, A., Babamiri, H., Adibkia, K., Barar, J., and Omidi, Y., BioImpacts, 2018, vol. 8, no. 2, p. 117. doi  https://doi.org/10.15171/bi.2018.14 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Buliaková, B., Mesárošová, M., Bábelová, A., Šelc, M., Némethová, V., Šebová, L., Rázga, F., Ursínyová, M., Chalupa, I., and Gábelová, A., Nanomed. Nanotechnol. Biol. Med., 2017, vol. 13, no. 1, p. 69. doi  https://doi.org/10.1016/j.nano.2016.08.027 CrossRefGoogle Scholar
  133. 133.
    Mohanta, S.C., Saha, A., and Devi, P.S., Mater. Today Proc., 2018, vol. 5, no. 3, pt. 3, p. 9715. doi  https://doi.org/10.1016/j.matpr.2017.10.158 CrossRefGoogle Scholar
  134. 134.
    Schlipf, D.M., Jones, C.A., Armbruster, C.A., Rushing, E.S., Wooten, K.C., Rankin, S.E., and Knutson, B.L., Coll. Surf. (A), 2015, vol. 478, p. 15. doi  https://doi.org/10.1016/j.colsurfa.2015.03.039 CrossRefGoogle Scholar
  135. 135.
    Yasmin, Z., Zhang, M., Gorski, W., Maswadi, S., Glickman, R., and Nash, K.L., Mater. Res. Soc. Symp. Proc., 2012, vol. 1471, p. 18. doi  https://doi.org/10.1557/opl.2012.1076 CrossRefGoogle Scholar
  136. 136.
    Nosrati, H., Salehiabar, M., Manjili, H.K., Danafar, H., and Davaran, S., Int. J. Biol. Macromol., 2018, vol. 108, p. 909. doi  https://doi.org/10.1016/j.ijbiomac.2017.10.180 CrossRefPubMedGoogle Scholar
  137. 137.
    Atacan, K., Çakıroğlu, B., and Özacar, M., Int. J. Biol. Macromol., 2017, vol. 97, p. 148. doi  https://doi.org/10.1016/j.ijbiomac.2017.01.023 CrossRefPubMedGoogle Scholar
  138. 138.
    Nhavene, E.P.F., da Silva, W.M., Trivelato, R.R. Jr., Gastelois, P.L., Venâncio, T., Nascimento, R., Batista, R.J.C., Machado, C.R., Macedo, W.A.A., and de Sousa, E.M.B., Micropor. Mesopor. Mater, 2018, vol. 272, p. 265. doi  https://doi.org/10.1016/j.micromeso.2018.06.035 CrossRefGoogle Scholar
  139. 139.
    Wang, L., Yang, Z., Gao, J., Xu, K., Gu, H., Zhang, B., Zhang, X., and Xu, B., J. Am. Chem. Soc., 2006, vol. 128, no. 41, p. 13358. doi  https://doi.org/10.1021/ja0651355 CrossRefPubMedGoogle Scholar
  140. 140.
    Ehrlich, G.V and Lisichkin, G.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 6, p. 1220. doi  https://doi.org/10.1134/S1070363217060196 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of SciencesMoscowRussia

Personalised recommendations