Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 10, pp 2069–2074 | Cite as

Boron Carbide Secrets

  • S. V. KonovalikhinEmail author
  • V. I. Ponomarev
  • D. Yu. Kovalev
  • S. A. Guda
Article
  • 7 Downloads

Abstract

The issues of the composition-structure relationship of boron carbide are discussed. A new hypothesis based on the presence of channels with a diameter of 2.7–2.9 Å in crystals, into which C or B atoms can be intruded, has been proposed. The intrusion has been confirmed by the data of quantum-chemical simulation using VASP program. It has been shown that the introduction of atoms into the channels changes the cell parameters and deforms the structural fragments. The latter may cause the formation of monoclinic crystals of boron carbide. According to the quantum chemical simulattions, the cell parameters of boron carbide crystals of the same composition depend on the site of intrusion of the C atoms into the channels.

Keywords

boron carbide DFT quantum-chemical simulation composition-structure relationship 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This study was presented as oral contribution at the All-Russian Conference “Chemistry of Solid State and Functional Materials” (12th All-Russian Symposium “Thermodynamics and Materials Science”, May 21–27, 2018).

Conflict of Interest

No conflict of interest was declared by the authors.

References

  1. 1.
    Kislyi, P.S., Kuzenkova, M.A., Bodnaruk, N.I., and Grabchuk, B.L., Karbid bora (Boron Carbide), Kiev: Naukova Dumka, 1988.Google Scholar
  2. 2.
    Domnich, V., Reynaud, S., Haber, R.A., and Chhowalla, M., J. Am. Ceram. Soc., 2011, vol. 94, no. 11, p. 3605.  https://doi.org/10.1111/j.1551-2916.2011.04865.x CrossRefGoogle Scholar
  3. 3.
    Werheit, H., Solid State Sci., 2016, vol. 60, p. 45.  https://doi.org/10.1016/j.solidstatesciences.2016.08.006 CrossRefGoogle Scholar
  4. 4.
    Morosin, B. and Kwei, G.H., J. Phys. Chem., 1996, vol. 100, no. 19, p. 8031.CrossRefGoogle Scholar
  5. 5.
    Gosset, D. and Colin, M., J. Nucl. Mater., 1991, vol. 183, no. 2, p. 161.  https://doi.org/10.1016/0022-3115(91)90484-0 CrossRefGoogle Scholar
  6. 6.
    Ponomarev, V.I., Kovalev, I.D., Konovalikhin, S.V., and Vershinnikov, V.I., Crystallography Rep., 2013, vol. 58, no. 3, p. 422.  https://doi.org/10.1134/S1063774513030188 CrossRefGoogle Scholar
  7. 7.
    Mauri, F., Vast, N., and Pickard Ch.J., Phys. Rev. Lett., 2001, vol. 87, no. 8, p. 1247.  https://doi.org/10.1103/PhysRevLett.87.085506 CrossRefGoogle Scholar
  8. 8.
    Balakrishnarajan, M.M., Pancharatna, P.D., and Hoffmann, R., New J. Chem., 2007, vol. 31, no. 4, p. 473.  https://doi.org/10.1039/b618493 CrossRefGoogle Scholar
  9. 9.
    Konovalikhin, S.V. and Ponomarev, V.I., Russ. J. Phys. Chem. (A), 2010, vol. 84, no. 8, p. 1445.  https://doi.org/10.1134/S0036024410080297 CrossRefGoogle Scholar
  10. 10.
    Shteinberg, A.S., Raduchev, V.A., Denisevich, V.V., Ponomarev, V.I., Mamyan, S.S., and Kanaev, I.A., Dokl. Akad. Nauk SSSR, 1991, vol. 317, no. 2, p. 370.Google Scholar
  11. 11.
    Konovalikhin, S.V., Ponomarev, V.I., Shilov, G.V., and Kovalev, I.D., J. Struct. Chem., 2017, vol. 58, no. 8, p. 1648  https://doi.org/10.1134/S0022476617080236 CrossRefGoogle Scholar
  12. 12.
    Zhdanov, G.S. and Sevastyanov, N.G., Dokl. Akad. Nauk SSSR, 1941, vol. 32, p. 832.Google Scholar
  13. 13.
    Clark, H.K. and Hoard, J.L., J. Am. Chem. Soc., 1943, vol. 65, no. 5, p. 2115.  https://doi.org/10.1021/ja01251a026 CrossRefGoogle Scholar
  14. 14.
    Yakel, H.L., Acta Crystallogr. (B), 1975, vol. 31, no. 7, p. 1797.  https://doi.org/10.1107/S0567740875006267 CrossRefGoogle Scholar
  15. 15.
    Kirfel, A., Gupta, A., and Will, G., Acta Crystallogr. (B), 1979, vol. 35, no. 5, p. 1052.  https://doi.org/10.1107/S0567740879005562 CrossRefGoogle Scholar
  16. 16.
    Will, G. and Kossobutzki, K.H., J. Less-Common Met., 1976, vol. 44, p. 87.  https://doi.org/10.1016/0022-5088(76)90120-X CrossRefGoogle Scholar
  17. 17.
    Konovalikhin, S.V. and Ponomarev, V.I., Russ. J. Inorg. Chem., 2009, vol. 54, no. 2, p. 197.  https://doi.org/10.1134/S0036023609020053 CrossRefGoogle Scholar
  18. 18.
    Rivers, M.L., Prakapenka, V.B., Kubo, A., Pullins, C., Hall, C.M., and Jacobsen, S.D., High Press. Res., 2008, vol. 28, p. 273.  https://doi.org/10.1080/08957950802333593 CrossRefGoogle Scholar
  19. 19.
    Sologub, O., Michiue, Yu., and Mori, T., Acta Crystallogr. (E), 2012, vol. 68, p. 67.  https://doi.org/10.1107/S1600536812033132 Google Scholar
  20. 20.
    Dera, P., Manghnani, M.H., Hushur, A., Hu Yi, and Tkachev, S.T., J. Solid State Chem., 2014, vol. 215, p. 85.  https://doi.org/10.1016/j.jssc.2014.03.018 CrossRefGoogle Scholar
  21. 21.
    Mondal, S., Bykova, E., Dey, S., Ali Sk, I., Dubrovinskaia, N., Dubrovinsky, L., Parakhonskiy, G., and van Smalalen, S., Sci. Rep., 2016, vol. 6, p. 19330.  https://doi.org/10.1038/srep19330 CrossRefGoogle Scholar
  22. 22.
    Werheit, H., Au, T., Schmechell, R., Shalamberidze, S.O., Kalandze, G.I., and Eristavi, A.M., J. Solid State Chem., 1999, vol. 154, p. 79.  https://doi.org/10.1006/jssc.2000.881 CrossRefGoogle Scholar
  23. 23.
    Werheit, H., J. Phys. Condens. Matter., 2007, vol. 19, p. 186207.  https://doi.org/10.1088/0953-8984/19/18/186207 CrossRefGoogle Scholar
  24. 24.
    Konovalikhin, S.V. and Ponomarev, V.I., Russ. J. Phys. Chem. (A), 2016, vol. 90, no. 7, p. 1503.  https://doi.org/10.1134/S0036024416070141 CrossRefGoogle Scholar
  25. 25.
    Kovalev, I., D., Ponomarev, V.I., Vershinnikov, V.I., and Konovalikhin, S.V., Int. J. Self-Prop. High-Temp. Synth., 2012, vol. 21, no. 2, p. 134.  https://doi.org/10.3103/S1061386212020033 CrossRefGoogle Scholar
  26. 26.
    Konovalikhin, S.V., Kovalev, D.Yu., and Guda, S.A., Russ. J. Phys. Chem. (A), 2018, vol. 92, no. 11, p. 2241.  https://doi.org/10.1134/S0044453718110183 Google Scholar
  27. 27.
    Safaraliev, G.K., Tverdye rastvory na osnove karbida kremniya (Silicon Carbide Solid Solutions), Moscow: Fizmatlit, 2011. p. 44.Google Scholar
  28. 28.
    Konovalikhin, S.V. and Ponomarev, V.I., Russ. J. Phys. Chem. (A), 2016, vol. 90, no. 10, p. 2107.  https://doi.org/10.1134/S0036024416100186 CrossRefGoogle Scholar
  29. 29.
    Suri, A.K., Subramanian, C., Sonber, J.K., and Murthy, T.S.R.Ch., Int. Mat. Rev., 2010, vol. 55, no. 1, p. 4.  https://doi.org/10.1179/095066009X12506721665211 CrossRefGoogle Scholar
  30. 30.
    He, J.L., Shen, Z.Q., Wu, E. Liu, Z.Y., He, L.L., Yu, D.L., Guo, L.C., Wu Q.H., Luo, X.G., Hu Q.K., Li, D.C., Yanagiasawa, O., and Tian, Y.J., J. Alloys Compd., 2007, vol. 437, nos. 1–2, p. 238.  https://doi.org/10.1016/j.jallcom.2006.07.097 CrossRefGoogle Scholar
  31. 31.
    Yu, Z.-Y., Fu, X., and Zhu, J., Sci. China Tech. Sci., 2011, vol. 54, no. 8, p. 2119.  https://doi.org/10.1007/js11431-011-44/2-T CrossRefGoogle Scholar
  32. 32.
    Konovalikhin, S.V., Kovalev, D.Yu., and Ponomarev, V.I., High Temperature, 2018, vol. 56, no. 5, p. 668.  https://doi.org/10.31857/S004036440003359-8 CrossRefGoogle Scholar
  33. 33.
    Konovalikhin, S.V. and Ponomarev, V.I., Russ. J. Phys. Chem. (A), 2015, vol. 89, no. 10, p. 1850.  https://doi.org/10.1134/S0036024415100155 Google Scholar
  34. 34.
    Ivanov-Shits, A.K. and Murin, A.V., Ionika tverdykh tel (Ionica of Solids), St. Petersburg: S.-Peterburg. Gos. Univ., 2000. vol. 1.Google Scholar
  35. 35.
    Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., Van de Streek, J., and Wood, P.A., J. Appl. Crystallogr., 2008, vol. 41, p. 466.  https://doi.org/10.1107/S0021889807067908 CrossRefGoogle Scholar
  36. 36.
    Kresse, G. and Furthmüller, J., J. Phys. Rev. (B), 1996, vol. 54, p. 11169.  https://doi.org/10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Konovalikhin
    • 1
    Email author
  • V. I. Ponomarev
    • 2
  • D. Yu. Kovalev
    • 1
  • S. A. Guda
    • 2
  1. 1.A. G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials SciencesRussian Academy of SciencesChernogolovkaRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations