Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 7, pp 1424–1432 | Cite as

Structural Parameters and Electron Transfer in Ytterbium, Lutetium, and Cerium Compounds with Hydrocarbon Monocycles

  • S. G. Semenov
  • M. E. BedrinaEmail author
  • A. E. Buzin
  • A. V. Titov
Article

Abstract

The DFT (U)PBE0 method was used to calculate the structural parameters of the C5H5Yb·, C5H5Lu, C8H8Lu·, C8H8Yb, (C5H5)2Yb, (C5H5)3Yb, C5H5YbC8H8, C5H5Ce·C8H8, C5H5LuC8H8, (C8H8)2Lu, (C8H8)Ce*, (C8H8)2Ce, (C8H8LuC8H8)2Yb, and (C8H8Ce·C8H8)2Yb molecules. In the (C8H8)2Ce molecule, the oxidation state of the lanthanide is higher than in the quadruple-decker (C8H8LnC8H8)2Yb complexes, in the C5H5LnC8H8 molecules, and in the free radicals (C8H8)2Ce* and (C8H8)2Lu. Oxidation of (C5H5)2Yb with cyclooctatetraene and the binding of the (C8H8)2Ln molecules by ytterbium(II) are exothermic reactions. The atomic charges and the dipole and quadrupole moments are indicative of incomplete transfer of the lanthanide valence electrons to the ligands, i.e., of a significant covalent component of the η5 and η8 bonds. Lutetium interacts with cyclooctatetraene as a lanthanide, without showing the properties of transition metals.

Keywords

ytterbium(I,II,III) lutetium(I,II,III) cerium(III,IV) cyclooctatetraene double- and quadruple-decker metal complexes electron transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This study was financially supported by the Russian Science Foundation (project no. 14-31-00022).

References

  1. 1.
    Elschenbroich, Ch., Organometallchemie, Wiesbaden: B.G. Teubner Verlag, 2008.Google Scholar
  2. 2.
    Fischer, R.D., Angew. Chem., Int. Ed., 1994, vol. 33, no. 21, p. 2165. doi  https://doi.org/10.1002/anie.199421651 CrossRefGoogle Scholar
  3. 3.
    Dolg, M., Fulde, P., Küchle, W., Neumann, C.-S., and Stoll, H., J. Chem. Phys., 1991, vol. 94, no. 4, p. 3011. doi  https://doi.org/10.1063/1.459824 CrossRefGoogle Scholar
  4. 4.
    Dolg, M., Fulde, P., Stoll, H., Preuss, H., Chang, A., and Pitzer, R.M., Chem. Phys., 1995, vol. 195, nos. 1–3, p. 71. doi  https://doi.org/10.1016/0301-0104(94)00363-F CrossRefGoogle Scholar
  5. 5.
    Kerridge, A., Coates, R., and Kaltsoyannis, N., J. Phys. Chem. A, 2009, vol. 113, no. 12, p. 2896. doi  https://doi.org/10.1021/jp807804w CrossRefGoogle Scholar
  6. 6.
    Mooßen, O. and Dolg, M., Chem. Phys. Lett, 2014, vol. 594, no. 1, p. 47. doi  https://doi.org/10.1016/j.cplett.2014.01.022 CrossRefGoogle Scholar
  7. 7.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865. doi  https://doi.org/10.1103/PhysRev-Lett.77.3865 CrossRefGoogle Scholar
  8. 7a.
    Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 115, no. 16, p. 7348. doi  https://doi.org/10.1063/1.1406535 Google Scholar
  9. 8.
    Cao, X. and Dolg, M., J. Chem. Phys, 2001, vol. 110, no. 13, p. 6158. doi  https://doi.org/10.1063/1.478522 Google Scholar
  10. 9.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Rev. D.01, Wallingford CT: Gaussian, 2013.Google Scholar
  11. 10.
    Tomasi, J. and Persico, M., Chem. Rev., 1994, vol. 94, no. 7, p. 2027. doi  https://doi.org/10.1021/cr00031a013 CrossRefGoogle Scholar
  12. 11.
    Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999. doi  https://doi.org/10.1021/cr9904009 CrossRefGoogle Scholar
  13. 12.
    Cioslowski, J., J. Am. Chem. Soc., 1989, vol. 111, no. 22, p. 8333. doi  https://doi.org/10.1021/ja00204a001 CrossRefGoogle Scholar
  14. 13.
    McWeeny, R., J. Chem. Phys., 1951, vol. 19, no. 12, p. 1614. doi  https://doi.org/10.1063/1.1748146 CrossRefGoogle Scholar
  15. 13a.
    Mulliken, R.S., J. Chem. Phys., 1955, vol. 23, no. 10, p. 1833. doi  https://doi.org/10.1063/1.1740588 CrossRefGoogle Scholar
  16. 14.
    Reed, A.E., Weinstock, R.B., and Weinhold, F., J. Chem. Phys., 1985, vol. 83, no. 2, p. 735. doi  https://doi.org/10.1063/1.449486 CrossRefGoogle Scholar
  17. 15.
    Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika, (Theoretical Physics), Moscow: Nauka 1973, vol. 2, p. 131.Google Scholar
  18. 16.
    Semenov, S.G. and Makarova, M.V., Russ. J. Gen. Chem., 2011, vol. 81, no. 9, p. 1805. doi  https://doi.org/10.1134/S107036321109012X CrossRefGoogle Scholar
  19. 17.
    Vilkov, L.V., Mastryukov, V.S., and Sadova, N.I., Opredelenie geometricheskogo stroeniya svobodnykh molekul, (Determination of the Geometrical Structure of Free Molecules), Moscow: Mir Publishers 1983, p. 122.Google Scholar
  20. 18.
    Katz, T.J., J. Am. Chem. Soc., 1960, vol. 82, no. 14, p. 3784. doi  https://doi.org/10.1021/ja01499a077 CrossRefGoogle Scholar
  21. 19.
    Bach, I., Pörschke, K.-R., Proft, B., Goddard, R., Kopiske, C., Krüger, C., Rufinska, A., and Seevogel, K., J. Am. Chem. Soc., 1997, vol. 119, no. 16, p. 3773. doi  https://doi.org/10.1021/ja964210g CrossRefGoogle Scholar
  22. 20.
    Wessel, J., Behrens, U., Lork, E., and Mews, R., Angew. Chem., Int. Ed., 1995, vol. 34, no. 4, p. 443. doi  https://doi.org/10.1002/anie.199504431 CrossRefGoogle Scholar
  23. 21.
    O’Brien, L.C. and Bernath, P.F., J. Am. Chem. Soc., 1986, vol. 108, no. 16, p. 5017. doi  https://doi.org/10.1021/ja00276a058 CrossRefGoogle Scholar
  24. 22.
    Bopegedera, A.M.R.P., Fernando, W.T.L.M., and Bernath, P.F., J. Phys. Chem., 1990, vol. 94, no. 11, p. 4476. doi  https://doi.org/10.1021/j100374a024 CrossRefGoogle Scholar
  25. 23.
    Ortiz, J.V., J. Am. Chem. Soc., 1991, vol. 113, no. 9, p. 3593. doi  https://doi.org/10.1021/ja00009a057 CrossRefGoogle Scholar
  26. 24.
    Robles, E.S.J., Ellis, A.M., and Miller, T.A., J. Am. Chem. Soc., 1992, vol. 114, no. 18, p. 7171. doi  https://doi.org/10.1021/ja00044a033 CrossRefGoogle Scholar
  27. 25.
    Shibata, S., Bartell, L.S., and Gavin, R.M., Jr., J. Chem. Phys., 1964, vol. 41, no. 3, p. 717. doi  https://doi.org/10.1063/111725950 CrossRefGoogle Scholar
  28. 26.
    Tyler, J.K., Cox, A.P., and Sheridan, J., Nature, 1959, vol. 183, April, p. 1182. doi  https://doi.org/10.1063/111725950 CrossRefGoogle Scholar
  29. 27.
    Denning, R.G., Harmer, J., Green, J.L., and Irvin, M., J. Am. Chem. Soc., 2011, vol. 133, no. 50, p. 20644. doi  https://doi.org/10.1021/ja209311g CrossRefGoogle Scholar
  30. 28.
    Eggers, S.H., Kopf, J., and Fischer, R.D., Acta Cryst., Sect. C, 1987, vol. 43, no. 12, p. 2288. doi  https://doi.org/10.1107/S0108270187088036 CrossRefGoogle Scholar
  31. 29.
    Streitwieser, A., Jr., Kinsley, S.A., Rigsbee, J.T., Fragala, I.L., Ciliberto, E., and Rösch, N., J. Am. Chem. Soc., 1985, vol. 107, no. 25, p. 7786. doi  https://doi.org/10.1021/ja00311a108 CrossRefGoogle Scholar
  32. 30.
    Streitwieser, A., Kinsley, S.A., Jenson, C.H., and Rigsbee, J.T., Organometallics, 2004, vol. 23, no. 22, p. 5169. doi  https://doi.org/10.1021/om049743+ CrossRefGoogle Scholar
  33. 31.
    Cloke, F.G.N., Chem. Soc. Rev., 1993, no. 1, p. 17. doi  https://doi.org/10.1039/CS9932200017
  34. 32.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, p. 785. doi  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  35. 33.
    Becke, A.D., Phys. Rev. A, 1988, vol. 38, no. 6, p. 3098. doi  https://doi.org/10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  36. 33a.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. doi  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  37. 34.
    Asmis, K.R., Santambrogio, G., Brümmer, N., and Sauer, J., Angew. Chem., Int. Ed., 2005, vol. 44, no. 20, p. 3122. doi  https://doi.org/10.1002/anie.200462894 CrossRefGoogle Scholar
  38. 35.
    Asmis, K.R. and Sauer, J., Mass Spectrom. Rev., 2007, vol. 26, no. 4, p. 542. doi  https://doi.org/10.1002/mas CrossRefGoogle Scholar
  39. 36.
    Santambrogio, G., Brümmer, N., Wöste, L., Döbler, J., Sierka, M., Sauer, J., Meijer, G., and Asmis, K.R., Phys. Chem. Chem. Phys., 2008, vol. 10, no. 27, p. 3992. doi  https://doi.org/10.1039/b803492c CrossRefGoogle Scholar
  40. 37.
    Semenov, S.G., Bedrina, M.E., Klemeshev, V.A., and Titov, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 4, p. 622. doi  https://doi.org/10.1134/S1070363218040023 CrossRefGoogle Scholar
  41. 38.
    Semenov, S.G. and Bedrina, M.E., Russ. J. Gen. Chem., 2009, vol. 79, no. 8, p. 1741. doi  https://doi.org/10.1134/S1070363209080271 CrossRefGoogle Scholar
  42. 39.
    Semenov, S.G., Bedrina, M.E., Egorov, N.V., and Titov, A.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 5, p. 1095. doi  https://doi.org/10.1134/S1070363216050194 CrossRefGoogle Scholar
  43. 40.
    Walter, M.D., Booth, C.H., Lukens, W.W., and Andersen, R.A., Organometallics, 2009, vol. 28, no. 3, p. 698. doi  https://doi.org/10.1021/om7012327 CrossRefGoogle Scholar
  44. 41.
    Semenov, S.G., Bedrina, M.E., and Titov, A.V., Russ. J. Gen. Chem, 2016, vol. 86, no. 11, p. 2515. doi  https://doi.org/10.1134/S1070363216110189 CrossRefGoogle Scholar
  45. 42.
    Semenov, S.G., Bedrina, M.E., and Titov, A.V., Russ. J. Gen. Chem, 2016, vol. 86, no. 6, p. 1215. doi  https://doi.org/10.1134/S1070363216060013 CrossRefGoogle Scholar
  46. 43.
    Rheingold, A.L., Foley, M.J., and Sullivan, P.J., J. Am. Chem. Soc., 1982, vol. 104, no. 17, p. 4727. doi  https://doi.org/10.1021/ja00381a060 CrossRefGoogle Scholar
  47. 44.
    Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika, (Theoretical Physics), Moscow: Fizmatlit 2008, vol. 3, p. 340.Google Scholar
  48. 45.

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. G. Semenov
    • 1
  • M. E. Bedrina
    • 2
    Email author
  • A. E. Buzin
    • 1
    • 2
  • A. V. Titov
    • 1
  1. 1.Konstantinov Petersburg Institute of Nuclear PhysicsNational Research Center Kurchatov InstituteGatchinaRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations