Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 7, pp 1415–1423 | Cite as

Synthesis, Structure, and Biological Activity of Coordination Compounds of Cobalt(II), Nickel(II), and Copper(II) with N-(Methoxyphenyl)-2-[(5-nitrofuryl)methylene]hydrazine Carbothioamides

  • A. P. Gulea
  • N. L. Mitkevich
  • Yu. M. Chumakov
  • P. A. Petrenko
  • G. G. Balan
  • O. S. Burduniuc
  • V. I. TsapkovEmail author
Article
  • 4 Downloads

Abstract

4-(2-Methoxyphenyl)-, 4-(3-methoxyphenyl)-, and 4-(4-memoxyphenyl)-2-[(5-mttofuryl)methylene]-hydrazine carboxamide (HL1–3) react with hydrates of cobalt (nickel, copper) chloride (nitrate, acetate) with the formation of the M(HL1–3)2X2 (M = Co2+, Ni2+, Cu2+; X = Cl, NO3−) and M(L1–3)2 (M = Ni2+, Cu2+) coordination compounds. Structure of the obtained compounds has been studied by means of X-ray diffraction analysis. Their antimicrobial and antifungal activity towards a series of Staphylococcus aureus, Escherichia coli, and yeast-like fungi standard strains has been investigated.

Keywords

cobalt(II) complexes nickel(II) complexes copper(II) complexes hydrazine carbothioamides crystal structure antimicrobial activity antifungal activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mashkovskii, M.D., Lekarstvennye sredstva, (Drugs), Moscow: Novaya Volna 2012.Google Scholar
  2. 2.
    Kalinowski, D.S. and Richardson, D.R., Pharmacol. Rev, 2005, vol. 57, no. 4, p. 547. doi  https://doi.org/10.1124/pr.57.4.2 CrossRefGoogle Scholar
  3. 3.
    Beraldo, H. and Gambino, D., Mini-Rev. Med. Chem., 2004, vol. 4, no. 1, p. 31. doi  https://doi.org/10.2174/1389557043487484 CrossRefGoogle Scholar
  4. 4.
    Ulkuseven, B., Bal-Demirci, T., Akkurt, M., Yalcin, S.P., and Buyukgungor, O., Polyhedron, 2008, vol. 27, p. 3646. doi  https://doi.org/10.1016/j.poly.2008.08.024 CrossRefGoogle Scholar
  5. 5.
    Gulea, A.P., Lozan-Tyrshu, K.S., Tapcov, V.I., Korzha, I.D., and Rudik, V.F., Russ. J. Gen. Chem, 2012, vol. 82, no. 11, p. 1869. doi  https://doi.org/10.1134/S1070363212110242 CrossRefGoogle Scholar
  6. 6.
    Spek, A.L., J. Appl. Cryst., 2003, vol. 36, p. 7. doi  https://doi.org/10.1107/S0021889802022112 CrossRefGoogle Scholar
  7. 7.
    Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, New York: Wiley Interscience, 1963.Google Scholar
  8. 8.
    Gulea, A.P., Spynu, S.N., Tsapkov, V.I., and Poirier, D., Russ. J. Gen. Chem., 2008, vol. 78, no. 8, p. 984. doi  https://doi.org/10.1134/S1070363208050253 CrossRefGoogle Scholar
  9. 9.
    Gulea, A.P., Prisacari, V.I., Tsapkov, V.I., Buracheva, S.A., Spynul, S.N., Bezhenari, N.P., Poirier, D., and Roy, J., Pharm. Chem. J., 2007, vol. 41, no. 11, p. 596. doi  https://doi.org/10.30906/0023-1134-2007-41-11-29-32 CrossRefGoogle Scholar
  10. 10.
    Gulea, A.P., Prisacari, V.I., Tsapkov, V.I., Buracheva, S.A., Spynu, S.N., and Bezhenari, N.P., Pharm. Chem. J., 2008, vol. 42, no. 11, p. 326. doi  https://doi.org/10.30906/0023-1134-2008-42-6-19-21 CrossRefGoogle Scholar
  11. 11.
    Pahontu, E., Fala, V., Gulea, A., Poirier, D., Tsapkov, V., and Rosu, T., Molecules, 2013, no. 18, p. 8812. doi  https://doi.org/10.3390/molecules18088812
  12. 12.
    Pahontu, E., Julea, F., Rosu, T., Purcarea, V., Chumakov, Yu., Petrenko, P., and Gulea, A., J. Cell. Mol. Med., 2015, vol. 19, no. 4, p. 865. doi  https://doi.org/10.1111/jcmm.12508 CrossRefGoogle Scholar
  13. 13.
    Pathan, A.H., Bakale, R.P., Naik, G.N., Frampton, C.S., and Gudasi, K.B., Polyhedron, 2012, vol. 34, no. 1, p. 149. doi  https://doi.org/10.1016/j.poly.2011.12.033 CrossRefGoogle Scholar
  14. 14.
    CrysAlisPro, Version 1.171.33.52 (release 06-11-2009 CrysAlis171.NET). Oxford Diffraction Ltd.Google Scholar
  15. 15.
    Sheldrich, G.M., Acta Cryst. (A), 2008, vol. 64, p. 112. doi  https://doi.org/10.1107/S0108767307043930 CrossRefGoogle Scholar
  16. 16.
    Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., and Van De Streek, J., J. Appl. Cryst., 2006, vol. 39, p. 453. doi  https://doi.org/10.1107/S002188980600731X CrossRefGoogle Scholar
  17. 17.
    Saswati, Dinda, R., Schmiesing, C., Sinn, E., Patil, Y.P., Nethaji, M., Stoeckli-Evans, H., and Acharyya, R., Polyhedron, 2013, vol. 50, p. 354. doi  https://doi.org/10.1016/j.poly.2012.11.031 CrossRefGoogle Scholar
  18. 18.
    Gulea, A., Poirier, D., Roy, J., Stavila, V., Bulimestru, I., Tapcov, V., Birca, M., and Popovschi, L., J. Enzyme Inhib. Med. Chem., 2008, vol. 23, no. 6, p. 806. doi 101080/147563607017443002CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. P. Gulea
    • 1
  • N. L. Mitkevich
    • 1
  • Yu. M. Chumakov
    • 2
    • 3
  • P. A. Petrenko
    • 2
  • G. G. Balan
    • 4
  • O. S. Burduniuc
    • 4
    • 5
  • V. I. Tsapkov
    • 1
    Email author
  1. 1.State University of MoldovaKishinevMoldova
  2. 2.Institute of Applied PhysicsKishinevMoldova
  3. 3.Gebze Institute of TechnologyCayirova, KocaeliTurkey
  4. 4.State University of Medicine and Pharmacy “Nicolae Testemitanu,”KishinevMoldova
  5. 5.National Agency of Public HealthKishinevMoldova

Personalised recommendations