Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 7, pp 1409–1414 | Cite as

Complexing Ability of Heterocyclic N-Oxides Toward Proton Donor Compounds

  • N. Sh. Lebedeva
  • Yu. A. GubarevEmail author
  • E. S. Yurina
  • S. S. Guseinov
  • A. I. V’yugin
  • V. P. Andreev
Article

Abstract

The interaction of styryl derivatives of pyridine N-oxides with proton donors in various solvents was studied. UV-Vis spectroscopy and thermogravimetric analysis were applied to determine the spectral and thermo-chemical characteristics of the resulting molecular complexes. The dependences of the thermodynamic parameters of the complexes on the N-oxide structure and on the solvating medium were established. The DSC method was used to determine the temperature and enthalpy characteristics of the desolvation and melting processes for both N-oxides and their complexes with proton donors.

Keywords

N-oxides proton donors thermodynamic stability constants differential scanning calorimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tang, C.W., VanSlyke, S.A., and Chen, C., J. Appl. Phys., 1989, vol. 65, no. 9, p. 3610. doi  https://doi.org/10.1063/1.343409 CrossRefGoogle Scholar
  2. 2.
    Markov, R., Plekhanov, A., Rautian, S., Safonov, V., Orlova, N., Shelkovnikov, V., and Volkov, V., Opt. Spectrosc., 1998, vol. 85, p. 588.Google Scholar
  3. 3.
    Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., and Holmes, A.B., Nature, 1990, vol. 347, p. 539. doi  https://doi.org/10.1038/347539a0 CrossRefGoogle Scholar
  4. 4.
    Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Santos, D.A.D., Brédas, J.L., Lögdlund, M., and Salaneck, W.R., Nature, 1999, vol. 397, p. 121. doi  https://doi.org/10.1038/16393 CrossRefGoogle Scholar
  5. 5.
    Gubarev, Y., Lebedeva, N., Golubev, S., Andreev, V., Kumeev, R., Vyugin, A., and Alper, G., Macroheterocycles, 2013, vol. 6, no. 1, p. 106. doi  https://doi.org/10.6060/mhc120986g CrossRefGoogle Scholar
  6. 6.
    Gubarev, Yu.A., Lebedeva, N.Sh., Yurina, E.S., Andreev, V.P., and V’yugin, A.I., Russ. J. Phys. Chem. (A), 2018, vol. 92, no. 4, p. 804. doi  https://doi.org/10.1134/s0036024418040052 CrossRefGoogle Scholar
  7. 7.
    Kondratieva, A.P., Lebedeva, N.Sh., Gubarev, Yu.A., Pavlycheva, N.A., Andreev, V.P., Alper, G.A., and Kumeev, R.S., J. Struct. Chem., 2009, vol. 50, no. 4, p. 722. doi  https://doi.org/10.1007/s10947-009-0110-3 CrossRefGoogle Scholar
  8. 8.
    Gubarev, Yu.A., Lebedeva, N.Sh., Andreev, V.P., Nizhnik, Ya.P., and V’yugin, A.I., Russ. J. Gen. Chem., 2007, vol. 77, no. 6, p. 1093. doi  https://doi.org/10.1134/s1070363207060254 CrossRefGoogle Scholar
  9. 9.
    Lebedeva, N., Zielenkiewicz, W., Utzig, E., Gubarev, Y., Andreev, V., and Nizhnik, Ya., J. Therm. Anal. Calorim., 2008, vol. 91, no. 2, p. 601. doi  https://doi.org/10.1007/s10973-007-8444-6 CrossRefGoogle Scholar
  10. 10.
    Teodorescu, F., Nica, S., Uncuta, C., Bartha, E., Filip, P.I., Vanthuyne, N., Roussel, C., Mandi, A., Toth, L., Kurtan, T., Naubron, J.V, and Man, I.C., Tetrahedron Asym., 2015, vol. 26, nos. 18–19, p. 1043. doi  https://doi.org/10.1016/j.tetasy.2015.08.006 CrossRefGoogle Scholar
  11. 11.
    Katritzky, A., Boulton, A., and Short, D., J. Chem. Soc., 1960, p. 2954. doi  https://doi.org/10.1039/JR9600002954
  12. 12.
    Garvey, R.G., Nelson, J.H., and Rasdale, R.O., Coord. Chem. Rev., 1968, vol. 3, no. 3, p. 375. doi  https://doi.org/10.1016/S0010-8545(00)80123-X CrossRefGoogle Scholar
  13. 13.
    Rybachenko, V.I., Shroeder, G., Chotii, K.Yu., Kovalenko, V.V., Red’ko, A.N., and Gierzyk, B., Russ. J. Phys. Chem. (A), 2007, vol. 81, no. 10, p. 1608. doi  https://doi.org/10.1134/S0036024407100111 CrossRefGoogle Scholar
  14. 14.
    Becker, H., Elektronentheorie organisch-chemischer Reaktionen, Berlin: Deutscher Verlag der Wissenschaften, 1964. Translated under the title Vvedenie v elektronnuyu teoriyu organicheskikh reaktsii, Moscow: Mir, 1977, p. 658.Google Scholar
  15. 15.
    Pal’m, V.A., Osnovy kolichestvennoi teorii organicheskikh reaktsii, (Fundamentals of the Quantitative Theory of Organic Reactions), Leningrad: Khimiya 1977, p. 360.Google Scholar
  16. 16.
    Andreev, V.P., Nizhnik, Ya.P., and Lebedeva, N.Sh., Russ. J. Org. Chem., 2008, vol. 44, no. 6, p. 906. doi  https://doi.org/10.1134/S1070428008060213 CrossRefGoogle Scholar
  17. 17.
    Tournilhac, F., Nicoud, J., Simon, J., Weber, P., Guillon, D., and Skoulios, A., Liq. Cryst., 1987, vol. 2, no. 1, p. 55. doi  https://doi.org/10.1080/02678298708086637 CrossRefGoogle Scholar
  18. 18.
    Titskii, G.D. and Turovskaya, M.K., Zh. Org. Khim., 1992, vol. 28, no. 9, p. 1911.Google Scholar
  19. 19.
    Xiao, Q., Huang, S., Liu, Y., Tian, F.-F., and Zhu, J.-C., J. Fluoresc., 2008, vol. 19, no. 2, p. 317. doi  https://doi.org/10.1007/s10895-008-0418-y CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. Sh. Lebedeva
    • 1
  • Yu. A. Gubarev
    • 1
    Email author
  • E. S. Yurina
    • 1
  • S. S. Guseinov
    • 1
  • A. I. V’yugin
    • 1
  • V. P. Andreev
    • 2
  1. 1.G.A. Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  2. 2.Petrozavodsk State UniversityPetrozavodskRussia

Personalised recommendations