Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 7, pp 1377–1383 | Cite as

Unexpected Dual Acylation of Naphtho[2,1-b]furan at the Aryl and Hetaryl Ring: Experimental and Theoretical Study

  • V. P. Rybalkin
  • S. Yu. Zmeyeva
  • V. V. Tkachev
  • M. E. Kletskii
  • O. N. Burov
  • L. L. Popova
  • A. D. DubonosovEmail author
  • V. V. Bren
  • S. M. Aldoshin
  • V. I. Minkin
Article

Abstract

Depending on the reaction conditions, the acylation of 2-ethylnaphtho[2,1-b]furan leads to the formation of a mixture of 1-acetyl-, 5-acetyl-, and 1,5-diacetyl derivatives with a widely varying ratio of components, the structure of which has been characterized by IR and NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis methods. Quantum-chemical simulations using the DFT B3LYP/6-311++G** method have reproduced the experimental geometry of isomeric acetyl[2,1-b]furans and indicated their close thermodynamic stability. However, the Fukui indices of the reactivity f have indicated the preference of the primary attack of the electrophile at the C5 position (f = 0.18) as compared to the C1 position (f = 0.06).

Keywords

naphtho[2,1-b]furan acylation acetyl[2,1-b]furan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This study was performed in the scope of the basic part of the State Task of the Ministry of Education and Science of the Russian Federation in the field of scientific activity [no. 4.6497.2017/8.9, 4.5593.2017/6.7 (Southern Federal University), 0089-2014-0009 (Institute of Problems of Chemical Physics of Russian Academy of Sciences), and 01201354239 (Southern Scientific Center of Russian Academy of Sciences)].

References

  1. 1.
    Lasne, C., Venegas, W., Royer, R., and Chouroulinkov, I., Jap. J. Cancer Res., 1987, vol. 78, no. 6, p. 565. doi  https://doi.org/10.20772/cancersci1985.78.6_565 Google Scholar
  2. 2.
    Nagaraja, G.K., Prakash, G.K., Kumaraswamy, M.N., Vaidya, V.P., and Mahadevan, K.M., Arkivoc, 2006, no. 15, p. 160. doi  https://doi.org/10.3998/ark.5550190.0007.f19
  3. 3.
    Srivastava, V., Negi, A.S., Kumar, J.K., Faridi, U., Sisodia, B.S., Darokar, M.P., Luqman, S., and Khanuja, S.P.S., Bioorg. Med. Chem. Lett., 2006, vol. 16, no. 4, p. 911. doi  https://doi.org/10.1016/j.bmcl.2005.10.105 CrossRefGoogle Scholar
  4. 4.
    Vagdevi, H.M., Vaidya, V.P., Latha, K.P., and Padmashali, B., Ind. J. Pharm. Sci., 2006, vol. 68, no. 6, p. 719. doi  https://doi.org/10.4103/0250-474X.31002 CrossRefGoogle Scholar
  5. 5.
    Ramesh, D., Chandrashekhar, C., and Vaidya, V.P., Ind. J. Chem. (B), 2008, vol. 47, p. 753. doi  https://doi.org/10.1002/chin.200835144 Google Scholar
  6. 6.
    Devi, K.S., Ramaiah, M., Roopa, D.L., and Vaidya, V.P., J. Chem., 2010, vol. 7, no. S1, p. S358. doi  https://doi.org/10.1155/2010/863547 Google Scholar
  7. 7.
    Abd El-Wahab, A.H.F., Al-Fifi, Z.I.A., Bedair, A.H., Ali, F.M., Halawa, A.H.A., and El-Agrody, A.M., Molecules, 2011, vol. 16, no. 1, p. 307. doi  https://doi.org/10.3390/molecules16010307 CrossRefGoogle Scholar
  8. 8.
    Halli, M.B., Sumathi, R.B., and Kinni, M., Spectrochim. Acta (A), 2012, vol. 99, p. 46. doi  https://doi.org/10.1016/j.saa.2012.08.089 CrossRefGoogle Scholar
  9. 9.
    Sumathi, R.B. and Halli, M.B., Bioinorg. Chem. Appl., 2014, vol. 2014. doi  https://doi.org/10.1155/2014/942162
  10. 10.
    Le Guével, R., Oger, F., Lecorgne, A., Dudasova, Z., Chevance, S., Bondon, A., Barath, P., Simonneaux, G., and Salbert, G., Bioorg. Med. Chem., 2009, vol. 17, no. 19, p. 7021. doi  https://doi.org/10.1016/j.bmc.2009.07.079.CrossRefGoogle Scholar
  11. 11.
    Sousa, C.M., Berthet, J., Delbaere, S., and Coelho, P.J., Dyes Pigm., 2017, vol. 137, p. 593. doi  https://doi.org/10.1016/j.dyepig.2016.11.001 CrossRefGoogle Scholar
  12. 12.
    Sousa, C., Saraiva, S., Macedo, H., and Coelho, P., Dyes Pigm., 2017, vol. 141, p. 269. doi  https://doi.org/10.1016/j.dyepig.2017.02.027 CrossRefGoogle Scholar
  13. 13.
    Guan, J., Zhang, P., Wei, T., Lin, Q., Yao, H., and Zhang, Y., RSC Adv., 2014, vol. 4, no. 67, p. 35797. doi  https://doi.org/10.1039/C4RA04130E CrossRefGoogle Scholar
  14. 14.
    Qu, W., Guan, J., Wei, T., Yan, G., Lin, Q., and Zhang, Y., RSC Adv., 2016, vol. 6, no. 42, p. 35804. doi  https://doi.org/10.1039/C6RA05381E CrossRefGoogle Scholar
  15. 15.
    Anwar, S., Huang, W., Chen, C., Cheng, Y., and Chen, K., Chem. Eur. J., 2013, vol. 19, no. 13, p. 4344. doi  https://doi.org/10.1002/chem.201204221 CrossRefGoogle Scholar
  16. 16.
    Pareek, A., Dada, R., Rana, M., Sharma, A.K., and Yaragorla, S., RSC Adv., 2016, vol. 6, no. 92, p. 89732. doi  https://doi.org/10.1039/C6RA17411F CrossRefGoogle Scholar
  17. 17.
    Uchuskin, M.G., Shcherbinin, V.A., and Butin, A.V., Chem. Heterocycl. Compd., 2014, vol. 50, no. 5, p. 619. doi  https://doi.org/10.1007/s10593-014-1515-2 CrossRefGoogle Scholar
  18. 18.
    Gilchrist, T.L., Heterocyclic Chemistry, London: Longman, 1992.Google Scholar
  19. 19.
    Katritzky, A.R. and Pozharskii, A.F., Handbook of Heterocyclic Chemistry, Amsterdam: Pergamon, 2000.Google Scholar
  20. 20.
    Joule, J.A. and Mills, K., Heterocyclic Chemistry, Oxford: Wiley, 2010.Google Scholar
  21. 21.
    Modern Heterocyclic Chemistry, Alvarez-Builla, J., Vaquero, J.J., and Barluenga, J., Eds., Weinheim: Wiley-VCH, 2011. doi  https://doi.org/10.1002/9783527637737 Google Scholar
  22. 22.
    Yokoyama, Y., Chem. Rev, 2000, vol. 100, no. 5, p. 1717. doi  https://doi.org/10.1021/cr980070c CrossRefGoogle Scholar
  23. 23.
    Yokoyama, Y. and Kose, M.J., Photochem. Photobiol. (A), 2004, vol. 166, nos. 1–3, p. 9. doi  https://doi.org/10.1016/j.jphotochem.2004.04.023 CrossRefGoogle Scholar
  24. 24.
    Liang, Y.C., Dvornikov, A.S., and Rentzepis, P.M., Macromolecules, 2002, vol. 35, no. 25, p. 9377. doi  https://doi.org/10.1021/ma0207500 CrossRefGoogle Scholar
  25. 25.
    Liang, Y.C., Dvornikov, A.S., and Rentzepis, P.M., Res. Chem. Intermed., 1998, vol. 24, p. 905. doi  https://doi.org/10.1163/156856798X00609 CrossRefGoogle Scholar
  26. 26.
    Yokoyama, Y., Tanaka, T., Yamane, T., and Kurita, Y., Chem. Lett, 1991, vol. 20, no. 7, p. 1125. doi  https://doi.org/10.1246/cl.1991.1125 CrossRefGoogle Scholar
  27. 27.
    Balenko, S.K., Rybalkin, V.P., Shepelenko, E.N., Popova, L.L., Makarova, N.I., Metelitsa, A.V., Bren, V.A., and Minkin, V.I., Russ. J. Org. Chem., 2006, vol. 42, no. 12, p. 1861. doi  https://doi.org/10.1134/S1070428006120190 CrossRefGoogle Scholar
  28. 28.
    Bisagni, M., Buu-Hoï, N.P., and Royer, R., J. Chem. Soc., 1955, p. 3688.  https://doi.org/10.1039/JR9550003688
  29. 29.
    Gabbutt, C.D., Heron, B.M., Kolla, S.B., Kilner, C., Coles, S.J., Horton, P.N., and Hursthouse, M.B., Org. Biomol. Chem., 2008, vol. 6, no. 17, p. 3096. doi  https://doi.org/10.1039/B807744D CrossRefGoogle Scholar
  30. 30.
    Gel’man, N.E., Terent’eva, N.A., Shanina, G.M., Kiparenko, L.M., and Rezl, V., Metody kolichestvennogo organicheskogo elementnogo mikroanaliza, (Methods of Quantitative Organic Elemental Microanalysis), Moscow: Khimiya 1987.Google Scholar
  31. 31.
    Sheldrick, G.M., SHELXTL, Structure Determination Software Suite. Version 6.14. Madison, Wisconsin, USA: Bruker AXS, 2000.Google Scholar
  32. 32.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision, D.01. Wallingford, CT: Gaussian, 2013.Google Scholar
  33. 33.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. doi  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  34. 34.
    Barone, V. and Cossi, M., J. Phys. Chem. (A), 1998, vol. 102, no. 11, p. 1995. doi  https://doi.org/10.1021/jp9716997 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. P. Rybalkin
    • 1
  • S. Yu. Zmeyeva
    • 2
  • V. V. Tkachev
    • 3
  • M. E. Kletskii
    • 4
  • O. N. Burov
    • 4
  • L. L. Popova
    • 2
  • A. D. Dubonosov
    • 1
    Email author
  • V. V. Bren
    • 2
  • S. M. Aldoshin
    • 3
  • V. I. Minkin
    • 2
  1. 1.Federal Research Centre the Southern Scientific Centre of the Russian Academy of SciencesRostov-on-DonRussia
  2. 2.Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia
  3. 3.Institute of Problems of Chemical Physics of the Russian Academy of SciencesChernogolovkaRussia
  4. 4.Chemistry Department of the Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations