Russian Journal of General Chemistry

, Volume 89, Issue 7, pp 1368–1376 | Cite as

Synthesis and Study of Antimicrobial Activity of Water-Soluble Ammonium Acylhydrazones Based on New 1,ω-Alkylenebis(isatins)

  • A. V. BogdanovEmail author
  • I. F. Zaripova
  • L. K. Mustafina
  • A. D. Voloshina
  • A. S. Sapunova
  • N. V. Kulik
  • V. F. Mironov


Alkylation of isatin with 1,ω-dihaloalkanes afforded bis(heterocycles) connected by an oligomethylene linker. The reaction of the resulting bis(isatins) with Girard’s T and Girard’s P reagents led to the formation of symmetrical water-soluble acyl hydrazones with high yields. Evaluation of antimicrobial activity of new compounds showed the dependence of the activity level on the hydrocarbon spacer length. The selective activity of nona- and decamethylene derivatives was established with respect to gram-positive bacteria S. aureus 209p and B. cereus 8035. Low hematotoxicity of the obtained heterocycles was revealed.


isatin hydrazones hydrazides antimicrobial activity pyridinium salts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the Center for Collective Use of the Spectral and Analytical Center of the Federal Research Center “Kazan Research Center of the Russian Academy of Sciences” for the technical support of the research.


  1. 1.
    Borad, M.A., Bhoi, M.N., Prajapati, N.P., and Patel, H.D., Synth. Commun., 2014, vol. 44, p. 1043. doi CrossRefGoogle Scholar
  2. 2.
    Singh, G.S. and Desta, Z.Y., Chem. Rev., 2012, vol. 112, p. 6104. doi CrossRefGoogle Scholar
  3. 3.
    Moradi, R., Ziarani, G.M., and Lashgari, N., Arkivoc, 2017, vol. 1, p. 148. doi CrossRefGoogle Scholar
  4. 4.
    Bogdanov, A.V and Zaripova, I.F., Chem. Heterocycl. Compd., 2018, vol. 54, p. 686. doi CrossRefGoogle Scholar
  5. 5.
    Musin, L.I., Bogdanov, A.V., and Mironov, V.F., Chem. Heterocycl. Compd., 2015, vol. 51, p. 421. doi CrossRefGoogle Scholar
  6. 6.
    Rudrangi, Sh.R.S., Bontha, V.K., Manda, V.R., and Bethi, S., Asian J. Res. Chem., 2011, vol. 4, p. 335.Google Scholar
  7. 7.
    Saraswat, P., Jeyabalan, G., Hassan, M.Z., Rahman, M.U., and Nyola, N.K., Synth. Commun., 2016, vol. 46, p. 1643. doi CrossRefGoogle Scholar
  8. 8.
    Design of Hybrid Molecules for Drug Development, Decker, M., Ed., Amsterdam: Elsevier, 2017.Google Scholar
  9. 9.
    Vine, K.L., Matesic, L., Locke, Ju.M., and Skropeta, D., Adv. Anticancer Agents Med. Chem., 2013, vol. 2, p. 254. doi CrossRefGoogle Scholar
  10. 10.
    Hou, J., Jin, K., Li, J., Jiang, Yu., Li, X., Wang, X., Huang, Y., Zhang, Y., and Xu, W., Anti-Cancer Drugs, 2016, vol. 27, p. 496. doi CrossRefGoogle Scholar
  11. 11.
    Xua, Zh., Zhang, Sh., Gao, Ch., Fan, J., Zhao, F., Lv, Z.-Sh., and Feng, L.-Sh., Chin. Chem. Lett., 2017, vol. 28, p. 159. doi CrossRefGoogle Scholar
  12. 12.
    Chadha, N. and Silakari, O., Eur. J. Med. Chem, 2017, vol. 134, p. 159. doi CrossRefGoogle Scholar
  13. 13.
    Zhang, G.-F., Liu, X., Zhang, Sh., Pan, B., and Liu, M.-L., Eur. J. Med. Chem, 2018, vol. 146, p. 599. doi CrossRefGoogle Scholar
  14. 14.
    Bogdanov, A.V., Musin, L.I., and Mironov, V.F., Arkivoc, 2015, vol. 6, p. 362. doi Google Scholar
  15. 15.
    Millemaggi, A. and Taylor, R.J.K., Eur. J. Org. Chem., 2010, no. 24, p. 4527. doi
  16. 16.
    Kumar, S., Saha, S.T., Gu, L., Palma, G., Perumal, Sh., Singh-Pillay, A., Singh, P., Anand, A., Kaur, M., and Kumar, V., ACS Omega, 2018, vol. 3, p. 12106. doi CrossRefGoogle Scholar
  17. 17.
    Martelli, G. and Giacomini, D., Eur. J. Med. Chem., 2018, vol. 158, p. 91. doi CrossRefGoogle Scholar
  18. 18.
    Jaiswal, Sh., Tripathi, R.K.P., and Ayyannan, S.R., Biomed. & Pharmacother., 2018, vol. 107, p. 1611. doi CrossRefGoogle Scholar
  19. 19.
    Eldehna, W.M., Almahli, H., Al-Ansary, Gh.H., Ghabbour, H.A., Aly, M.H., Ismael, O.E., Al-Dhfyan, A., and Abdel-Aziz, H.A., J. Enzyme Inhib. Med. Chem., 2017, vol. 32, p. 600. doi CrossRefGoogle Scholar
  20. 20.
    Rane, R.A., Karunanidhi, S., Jain, K., Shaikh, M., Hampannavar, G., and Karpoormath, R., Curr. Top. Med. Chem., 2016, vol. 16, p. 1262. doi CrossRefGoogle Scholar
  21. 21.
    Hu, Yu.-Q., Song, X.-F., and Fan, J., J. Heterocycl. Chem., 2018, vol. 55, p. 265. doi CrossRefGoogle Scholar
  22. 22.
    Deng, J.-L., Liu, X.-Ch., Cai, G.-W., Zhang, G., Hu, L., Qiu, L., Li, Z.-Y., and Xu, Zh., J. Heterocycl. Chem., 2018, vol. 55, p. 1509. doi CrossRefGoogle Scholar
  23. 23.
    Hua, X., Zhang, G., Zhang, D., and Wu, Y., J. Heterocycl. Chem., 2018, vol. 55, p. 1504. doi CrossRefGoogle Scholar
  24. 24.
    Xu, Y., Guan, J., Xu, Zh., and Zhao, Sh., Fitoterapia, 2018, vol. 127, p. 383. doi CrossRefGoogle Scholar
  25. 25.
    Jain, R., Gahlyan, P., Dwivedi, S., Konwar, R., Kumar, S., Bhandari, M., Arora, R., Kakkar, R., Kumar, R., and Prasad, A.K., Chemistry Select, 2018, vol. 3, p. 5263. doi Google Scholar
  26. 26.
    Li, W., Zhao, Sh.-J., Gao, F., Lv, Z.-Sh., Tu, J.-Y., and Xu, Zh., Chemistry Select, 2018, vol. 3, p. 10250. doi Google Scholar
  27. 27.
    Singh, A., Nisha, Bains, T., Hahn, H.J., Liu, N., Tam, Ch., Cheng, L.W., Kim, J., Debnath, A., Land, K.M., and Kumar, V., Med. Chem. Commun., 2017, vol. 8, p. 1982. doi CrossRefGoogle Scholar
  28. 28.
    Parthasarathy, K., Praveen, Ch., Saranraj, K., Balachandran, C., and Senthil Kumar, P., Med. Chem. Res., 2016, vol. 25, p. 2155. doi CrossRefGoogle Scholar
  29. 29.
    Parthasarathy, K., Praveen, Ch., Jeyaveeran, J.C., and Prince, A.A.M., Bioorg. Med. Chem. Lett., 2016, vol. 26, p. 4310. doi CrossRefGoogle Scholar
  30. 30.
    Sahoo, S., Mahendrakumar, C.B., and Setty, C.M., Int. J. Chem. Sci., 2015, vol. 13, p. 613.Google Scholar
  31. 31.
    Akhtar, R., Yousaf, M., Naqvi, S.A.R., Irfan, M., Zahoor, A.F., Hussain, A.I., and Chath, Sh.A.Sh., Synth. Commun., 2016, vol. 46, p. 1849. doi CrossRefGoogle Scholar
  32. 32.
    Zahoor, A.F., Yousaf, M., Siddique, R., Ahmad, S., Naqvi, S.A.R., and Rizvi, S.M.A., Synth. Commun., 2017, vol. 47, p. 1021. doi CrossRefGoogle Scholar
  33. 33.
    Bogdanov, A.V., Gil’fanova, A.R., Zaripova, I.F., and Mironov, V.F., Russ. J. Gen. Chem., 2018, vol. 88, p. 124. doi CrossRefGoogle Scholar
  34. 34.
    Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Strobykina, A.S., Kulik, N.V., Bukharov, S.V., and Mironov, V.F., Russ. J. Gen. Chem., 2018, vol. 88, p. 57. doi CrossRefGoogle Scholar
  35. 35.
    Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Strobykina, A.S., Kulik, N.V., Bukharov, S.V., Voronina, Ju.K., Khamatgalimov, A.R., and Mironov, V.F., Monatsh. Chem., 2018, vol. 149, p. 111. doi CrossRefGoogle Scholar
  36. 36.
    Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Sapunova, A.S., Kulik, N.V., Voronina, Ju.K., and Mironov, V.F., Chem. Biodiversity, 2018, vol. 15, p. 1800088. doi CrossRefGoogle Scholar
  37. 37.
    Rahmati, A. and Khalesi, Z., Tetrahedron, 2012, vol. 68, p. 8472. doi CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Bogdanov
    • 1
    Email author
  • I. F. Zaripova
    • 1
  • L. K. Mustafina
    • 1
  • A. D. Voloshina
    • 1
  • A. S. Sapunova
    • 1
  • N. V. Kulik
    • 1
  • V. F. Mironov
    • 1
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific CenterRussian Academy of ScienceKazan, TatarstanRussia

Personalised recommendations