Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 6, pp 1324–1331 | Cite as

Preparation of Submicron Chitosan-Alginate Particles and Study of Their Selective Sorption Properties with Respect to Amphiphilic Organic Compounds

  • I. M. LipatovaEmail author
  • A. A. YusovaEmail author
  • V. E. MaizlishEmail author
Article

Abstract

The effect of the composition of mixed dilute solutions of chitosan and sodium alginate on the size, ζ-potential, and weight yield of the submicron particles of the insoluble interpolymer polyelectrolyte complex, formed in these solutions, was examined. By the example of ionic dyes used as model sorbates it was shown that the composition of the initial solutions is a major factor in tuning the sorption properties of chitosanalginate carriers with respect to charged organic compounds.

Keywords

chitosan sodium alginate insoluble polyelectrolyte complex submicron particles sorption properties amphiphilic organic compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thünemann, A.F., Müller, M., Dautzenberg, H., Joanny, J.-F., and Löwen, H., Adv. Polym. Sci., 2004, no. 166, p. 113. doi  https://doi.org/10.1007/b11350
  2. 2.
    Izumrudov, V.A., Zezin, A.B., and Kabanov, V.A., Russ. Chem. Rev., 1991, vol. 60, no. 7, p. 792. doi  https://doi.org/10.1070/RC1991v060n07ABEH001111 CrossRefGoogle Scholar
  3. 3.
    Il’ina, A.V. and Varlamov, V.P., Appl. Biochem. Microbiol., 2005, vol. 41, no. 1, p. 5. doi  https://doi.org/10.1007/s10438-005-0002-z CrossRefGoogle Scholar
  4. 4.
    Barck, K. and Butler, M.F., J. Appl. Polym. Sci., 2005, vol. 98, no. 4, p. 1581. doi  https://doi.org/10.1002/ap.22177 CrossRefGoogle Scholar
  5. 5.
    Boddohi, S., Moore, N., Johnson, P.A., and Kipper, M.J., Biomacromolecules, 2009, vol. 10, no. 16, p. 1402. doi  https://doi.org/10.1021/bm801513e CrossRefGoogle Scholar
  6. 6.
    Kalsin, M., Kowalczyk, B., Smoukov, S.K., Klajn, R., and Grzybowski, B.A., J. Am. Chem. Soc., 2006, vol. 128, no. 47, p. 15046. doi  https://doi.org/10.1021/ja0642966 CrossRefGoogle Scholar
  7. 7.
    Sui, W., Huang, L., Wang, J., and Bo, O., Colloids Surf., B: Biointerfaces, 2008, vol. 65, p. 69. doi  https://doi.org/10.1016/j.colsurfb.2008.02.022 CrossRefGoogle Scholar
  8. 8.
    Schatz, C., Domard, A., Viton, C., Pichot, C., and Delair, T., Biomacromolecules, 2004, vol. 5, no. 5, p. 1882. doi  https://doi.org/10.1021/bm049786+ CrossRefGoogle Scholar
  9. 9.
    Saether, H.V., Holme, H.K., Maurstad, G., Smidsrød, O., and Stokke, B.T., Carbohydr. Polym., 2008, vol. 74, p. 813. doi  https://doi.org/10.1016/j.carbpol.2008.04.048 CrossRefGoogle Scholar
  10. 10.
    Polexe, R.C. and Delair, T., Molecules, 2013, vol. 18, p. 8563. Doi  https://doi.org/10.3390/molecules18078563 CrossRefGoogle Scholar
  11. 11.
    Huang, L., Sui, W., Wang, Y., and Jiao, Q., Carbohydr. Polym., 2010, vol. 80, no. 1, p. 168. doi  https://doi.org/10.1016/j.carbpol.2009.11.007 CrossRefGoogle Scholar
  12. 12.
    Mezina, E.A. and Lipatova, I.M., Russ. J. Appl. Chem., 2014, vol. 87, no. 6, p. 830. doi  https://doi.org/10.1134/S1070427214060275 CrossRefGoogle Scholar
  13. 13.
    Palamarchuk, I.A., Brovko, O.S., Bogolitsyn, K.G., Boitsova, T.A., Ladesov, A.V., and Ivakhnov, A.D., Russ. J. Appl. Chem., 2015, vol. 88, no. 1, p. 103. doi  https://doi.org/10.1134/S1070427215010152 CrossRefGoogle Scholar
  14. 14.
    Krayukhina, M.A., Samoilova, N.A., and Yamskov, I.A., Russ. Chem. Rev., 2008, vol. 77, no. 9, p. 799. doi  https://doi.org/10.1070/RC2008v077n09ABEH003750 CrossRefGoogle Scholar
  15. 15.
    Cegnar, M. and Kerč, J., Acta Chim. Slov., 2010, vol. 57, no. 2, p. 431. PMID: 24061741.Google Scholar
  16. 16.
    Prabaharan, M. and Mano, J.F., Drug. Deliv., 2004, vol. 12, no. 1, p. 41. doi  https://doi.org/10.1080/10717540590889781 CrossRefGoogle Scholar
  17. 17.
    Wang, W., Bo, S., Li, S., and Qin, W., Int. J. Biol. Macromol., 1991, vol. 13, p. 381. doi  https://doi.org/10.1016/0141-8130(91)90027-R CrossRefGoogle Scholar
  18. 18.
    Martinsen, A., Skjfik-Braek, G., and Smidsrod, O., Carbohydr. Polym., 1991, no. 15, p. 171. doi  https://doi.org/10.1016/0144-8617(91)90031-7
  19. 19.
    Yue, W., Yao, P., Li, Sh., Lai, Sh., and Liu, X., Food Chem., 2008, vol. 108, p. 1082. doi  https://doi.org/10.1016/j.foodchem.2007.11.047 CrossRefGoogle Scholar
  20. 20.
    Usov, A.I., Russ. Chem. Rev., 1999, vol. 68, no. 11, p. 957. doi  https://doi.org/10.1070/RC1999v068n11ABEH000532 CrossRefGoogle Scholar
  21. 21.
    Kulinich, V.P., Shaposhnikov, G.P., Gorelov, V.N., and Chernyaeva, E.A., Russ. J. Gen. Chem., 2006, vol. 76, no. 8, p. 1331. doi  https://doi.org/10.1134/S1070363206080317 CrossRefGoogle Scholar
  22. 22.
    Muzzarelli, R.A.A. and Muzzarelli, C., Adv. Polym. Sci., 2005, vol. 186, p. 151. doi  https://doi.org/10.1007/b136820 CrossRefGoogle Scholar
  23. 23.
    Sorlier, P., Denuziere, A., Viton, Ch., and Domard, A., Biomacromolecules, 2001, no. 2, p. 765. doi  https://doi.org/10.1021/bm015531+
  24. 24.
    Draget, K.I., Skjak-Braek, G., and Smidsrod, O., Carbohydr. Polym., 1994, vol. 25, no. 1, p. 31. doi  https://doi.org/10.1016/0144-8617(94)90159-7 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  2. 2.Ivanovo State University of Chemical TechnologyIvanovoRussia

Personalised recommendations