Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 6, pp 1316–1323 | Cite as

Carbonization of the Modified Cellulose of Annual Crops

  • A. N. PrusovEmail author
  • S. M. Prusova
  • A. V. Bazanov
  • P. R. Smirnov
  • M. V. Radugin
  • A. G. Zakharov
  • V. K. Ivanov
Article
  • 3 Downloads

Abstract

X-ray diffraction analysis was used to study the structural transformations of fibrous and microcrystalline flax, hemp, and jute cellulose, processed in aqueous-organic media containing sodium hydroxide. The thermal degradation of the initial and chemically modified cellulose was studied by thermogravimetry. The carbonization of cellulose in an inert atmosphere gave carbon materials. Common and specific features in the morphology and structure of the products were identified.

Keywords

cellulose structure modification carbonization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanchez, C., Rozes, L., Ribot, F., Laberty-Robert, C., Grosso, D., Sassoye, C., Boissiere, C., and Nicole, L., C.R. Chim., 2010, vol. 1, p. 3. doi  https://doi.org/10.1016/j.crci.2009.06.001 CrossRefGoogle Scholar
  2. 2.
    Manorama, S.V., Basak, P., and Singh, S., Nanocomposite Particles for Bio-Applications, Trindade, T. and Daniel da-Silva, A.L., Eds., Singapore: Pan Stanford, 2011, p. 249. doi  https://doi.org/10.4032/9789814267816
  3. 3.
    Kim, J., Yun, S., and Ounaies, Z., Macromolecules, 2006, vol. 39, no. 12, p. 4202. doi  https://doi.org/10.1021/ma060261e CrossRefGoogle Scholar
  4. 4.
    Steiner, S.A. III, Baumann, T.F., Bayer, B.C., Blume, R., Worsley, M.A., MoberlyChan, W.J., Shaw, E.L., Schlögl, R., Hart, A.J., Hofmann, S., Wardle, B.L., J. Am. Chem. Soc., 2009, vol. 131, p. 12144. doi  https://doi.org/10.1021/ja902913r CrossRefGoogle Scholar
  5. 5.
    Hoekstra, J., Beale, A.M., Soulimani, F., Versluijs-Helder, M., van de Kleut, D., Koelewijn, J.M., Geus, J.W., Carbon, 2016, vol. 107, p. 248. doi  https://doi.org/10.1016/j.carbon.2016.05.065 CrossRefGoogle Scholar
  6. 6.
    Ma, B., Huang, Y., Zhu, C., Chen, C., Fan, M., and Sun, M.M., J. Alloys Compds., 2016, vol. 687, p. 741. doi  https://doi.org/10.1016/j.jallcom.2016.06.187 CrossRefGoogle Scholar
  7. 7.
    Prusov, A.N., Prusova, S.M., Zakharov, A.G., Mikheev, V.G., Yeryomin, S.V., Voronko, O.V., RF Patent no. 2353626, Byull. Izobret., 2009, no. 12.Google Scholar
  8. 8.
    Prusov, A.N., Prusova, S.M., and Zakharov, A.G., Izv. Akad. Nauk, Ser. Khim., 2014, no. 9, p. 1926. doi  https://doi.org/10.1007/s11172-014-0683-7
  9. 9.
    Voronova, M.I., Petrova, S.N., Lebedeva, T.N., Ivanova, O.N., Prusov, A.N., and Zakharov, A.G., Russ. J. Appl. Chem., 2003, vol. 76, no. 12, p. 1993. doi  https://doi.org/10.1023/B:RJAC.0000022455.25354.f0 CrossRefGoogle Scholar
  10. 10.
    Rogovin, Z.A., Khimiya tsellyulozy (Chemistry of Cellulose), Moscow: Khimiya, 1972.Google Scholar
  11. 11.
    Cellulose and Its Derivatives, Bikales, N. M. and Segal, L., Eds., Wiley: New York, 1971.Google Scholar
  12. 12.
    Reyzin’sh, R.E., Chernyavskaya, S.A., Laka, M.G., and Klyavin’sh, Z.V., Khim. Drevesiny, 1984, no. 6, p. 45.Google Scholar
  13. 13.
    Chirkova, Ye.A., Veveris, G.P., and Veveris, A.G., Khim. Drevesiny, 1985, no. 3, p. 28.Google Scholar
  14. 14.
    Brunauer, S., Emmet, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, no. 2, p. 309. doi  https://doi.org/10.1021/ja01269a023 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. N. Prusov
    • 1
    Email author
  • S. M. Prusova
    • 1
  • A. V. Bazanov
    • 1
  • P. R. Smirnov
    • 1
  • M. V. Radugin
    • 1
  • A. G. Zakharov
    • 1
  • V. K. Ivanov
    • 2
  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations