Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 6, pp 1286–1296 | Cite as

Investigation of Acidic and Coordination Properties of Octabromo-Substituted Porphyrins in the System of 1,8-Diazabicyclo[5,4,0]unde-7-ene-Acetonitrile

  • S. G. PukhovskayaEmail author
  • Yu. B. IvanovaEmail author
  • A. S. Semeikin
  • S. A. Syrbu
  • N. N. KrukEmail author
Article
  • 1 Downloads

Abstract

Acidity and metal ion coordination are described for three porphyrin derivatives, different in their macrocycle conformation and electronic substitution effects due to bromine substitution in pyrrole rings and trifluorometyl or phenyl groups in meso-positions. Combination of these facts allows modulating both steric and electronic effects on the macrocycle π-conjugated system. The role of electronic substitution effects in the macrocycle deprotonation and metal ion complex formation is found dominating with comparable resonance and inductive contributions, whereas non-planar conformation of reactive species contributes to the reaction rates to a lesser extent. The interaction of two single-electron (a1ueg) and (a2ueg) configurations is studied as a function of non-planar distortions of the molecular structure for the three tetrapyrrole compounds. The additive influence of disturbing factors on the configuration interaction of single-electron (a1ueg) and (a2ueg) configurations in the tetrapyrrole macrocycle is demonstrated.

Keywords

porphyrins acid-base equilibria substitution effects molecular orbitals conformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berezin, B.D., Coordination Compounds of Porphyrins and Phthalocyanines, New York: Wiley, Toronto, 1981.Google Scholar
  2. 2.
    Davis, D.J., The Porphyrins, Dolphin, D., Ed., New-York: Academic Press, 1978, vol. 5, p. 127.Google Scholar
  3. 3.
    Sheidt, W.R. and Lee, Y., Struct. Bonding, 1987, vol. 64, p. 1.CrossRefGoogle Scholar
  4. 4.
    Berova, N., Pescitelli, G., Petrovic, A.G., and Proni, G., Chem. Commun., 2009, p. 5958. doi  https://doi.org/10.1039/B909582A
  5. 5.
    Bottari, G., Trukhina, O., Ince, M., and Torres, T., Coord. Chem. Rev., 2012, vol. 256, p. 2453. doi  https://doi.org/10.1016/j.ccr.2012.03.011 CrossRefGoogle Scholar
  6. 6.
    Tashiro, K. and Aida, T., Chem. Soc. Rev., 2007, vol. 36, p. 189. doi  https://doi.org/10.1039/B614883M CrossRefGoogle Scholar
  7. 7.
    Wienkers, M., Ramos, J., Jemal, H., and Cardenas, C., Org. Lett., 2012, vol. 14, p. 1370. doi  https://doi.org/10.1021/ol203249x CrossRefGoogle Scholar
  8. 8.
    Shelton, A.H., Rodger, A., McMillin, D.R., Biochemistry, 2007, vol. 46, p. 9143. doi  https://doi.org/10.1021/bi700293g CrossRefGoogle Scholar
  9. 9.
    Allard, M., Dupont, C., Muñoz Robles, V., Douce, N., Lledós, A., Maréchal, J.-D, Urvoas, A., Mahy, J.-P., and Ricoux, R., ChemBioChem, 2012, vol. 13, p. 240. doi  https://doi.org/10.1002/cbic.201100659 CrossRefGoogle Scholar
  10. 10.
    Venkatramaiah, N., Pereira, C.F., Mendes, R.F., Paz, F.A.A., and Tomé João, P.C., Anal. Chem., 2015, vol. 87, no. 8, p. 4515. doi  https://doi.org/10.1021/acs.analchem.5b00772 CrossRefGoogle Scholar
  11. 11.
    Romero-Nieto, C., Garcia, R., Herranz, M.A., Ehli, C., Ruppert, M., Hirsch, A., Guldi, D.M., and Martin, N.J., J. Am. Chem. Soc., 2012, vol. 134, p. 9183. doi  https://doi.org/10.1021/ja211362z CrossRefGoogle Scholar
  12. 12.
    Yoon, H., Lee, C.H., and Jang, W.D., Chem. Eur. J., 2012, vol. 18, p. 12479. doi  https://doi.org/10.1002/chem.201200371 CrossRefGoogle Scholar
  13. 13.
    Hermida-Ramon, J.M. and Estevez, C.M., Chem. Eur. J., 2007, vol. 13, p. 4743. doi  https://doi.org/10.1002/chem.200601836 CrossRefGoogle Scholar
  14. 14.
    Klarner, F.G. and Kahlert, B., Acc. Chem. Res., 2003, vol. 36, p. 919. doi  https://doi.org/10.1016/S1874-6004(08)80008-1 CrossRefGoogle Scholar
  15. 15.
    Carraro, M., Modugno, G., Fiorani, G., Maccato, C., Sartorel, A., and Bonchi, M., Eur. J. Org. Chem., 2012, p. 281. doi  https://doi.org/10.1002/ejoc.201101122
  16. 16.
    Steinle, E.D., Schaller, U., and Meyerhoff, M.E., Anal. Sci., 1998, vol. 14, p. 79. doi  https://doi.org/10.2116/analsci.14.79 CrossRefGoogle Scholar
  17. 17.
    Ivanova, Yu.B., Dao, T.N., Kruk, N.N., and Syrbu, S.A., Russ. J. Gen. Chem., 2013, vol. 83, no. 6, p. 1155. doi  https://doi.org/10.1134/S107036321306025X CrossRefGoogle Scholar
  18. 18.
    Ivanova, Yu.B., Dao Tkhe Nam, Glazunov, A.V., Semeikin, A.S., and Mamardashvili, N.Zh., Russ. J. Gen. Chem., 2012, vol. 82, no. 7, p. 1272. doi  https://doi.org/10.1134/S1070363212070158 CrossRefGoogle Scholar
  19. 19.
    Vlascici, D., Cosma, E.F., Pica, E.M., Cosma, V., Bizerea, O., Mihailescu, G., and Olenic, L., Sensors, 2008, vol. 8, p. 4995. doi  https://doi.org/10.3390/s8084995 CrossRefGoogle Scholar
  20. 20.
    Pukhovskaya, S.G., Fien, C.D., Domanina, E.N., Semeikin, A.S., Nam, D.T., and Ivanova, Yu.B., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 9, p. 1692. doi  https://doi.org/10.1134/S0036024417090242 CrossRefGoogle Scholar
  21. 21.
    Ivanova, Yu.B., Pukhovskaya, S.G., Semeykin, A.S., and Syrbu, S.A., Russ. J. Gen. Chem., 2013, vol. 83, p. 1406. doi  https://doi.org/10.1134/S1070363213070177 CrossRefGoogle Scholar
  22. 22.
    Pukhovskaya, S.G., Efimovich, V.A., Semeikin, A.S., and Golubchikov, O.A., Russ. J. Inorg. Chem., 2010, vol. 55, p. 1494. doi  https://doi.org/10.1134/S0036023610090275 CrossRefGoogle Scholar
  23. 23.
    Golubchikov, O.A., Pukhovskaya, S.G., and Kuvshinova, E.M., Russ. Chem. Rev., 2005, vol. 74, p. 249. doi  https://doi.org/10.1070/RC2005v074n03ABEH000925 CrossRefGoogle Scholar
  24. 24.
    Andrianov, V.G. and Malkova, O.V., Macroheterocycles, 2009, vol. 2, no. 2, p. 130.CrossRefGoogle Scholar
  25. 25.
    Dao Tkhe Nam, Ivanova, Yu.B., Puhovskaya, S.G., Kruk, M.M., Syrbu, S.A., RSC Adv., 2015, vol. 5, p. 26125. doi  https://doi.org/10.1039/c5ra01323b CrossRefGoogle Scholar
  26. 26.
    Nelson, N.Y., Medforth, C.J., Nurco, D.J., Jia, S.-L., Shelnutt, J.A., and Smith, K.M., Chem. Commun., 1999, p. 2071. doi  https://doi.org/10.1039/A904532E
  27. 27.
    Bhyrappa, P. and Krishnan, V., Inorg. Chem., 1991, vol. 30, no. 2, p. 239. doi  https://doi.org/10.1021/ic00002a018 CrossRefGoogle Scholar
  28. 28.
    Goll, J.G., Moore, K.T., Ghosh, A., Therien, M.J., J. Am. Chem. Soc., 1996, vol. 118, no. 35, p. 8344. doi  https://doi.org/10.1021/ja9610904 CrossRefGoogle Scholar
  29. 29.
    Kaljurand, A., Kütt, L., Sooväli, T., Rodima, V., Mäemets, I., Leito, I., and Koppel, A., Org. Chem., 2005, vol. 70, no. 3, p. 1019. doi  https://doi.org/10.1021/jo048252w CrossRefGoogle Scholar
  30. 30.
    Ivanova, Yu.B., Sheinin, V.B., Mamardashvili, N.Zh., Russ. J. Gen. Chem., 2007, vol. 77, no. 8, p. 1458. doi  https://doi.org/10.1134/S107036320708027 CrossRefGoogle Scholar
  31. 31.
    Ivanova, Yu.B., Churakhina, Yu.I., and Mamardashvili, N.Zh., Russ. J. Gen. Chem., 2008, vol. 78, no. 4, p. 673. doi  https://doi.org/10.1134/S1070363208040269 CrossRefGoogle Scholar
  32. 32.
    Ivanova, Yu.B., Chizhova, N.V., and Kruk, N.N., Russ. J. Gen. Chem., 2013, vol. 83, no. 3, p. 558. doi  https://doi.org/10.1134/S1070363213030250 CrossRefGoogle Scholar
  33. 33.
    D’Souza, F., Zandler, M.E., Tagliatesta, P., Ou, Z., Shao, J., Van Caemelbecke, E., and Kadish, K.M., Inorg. Chem., 1998, vol. 37, no. 18, p. 4567.CrossRefGoogle Scholar
  34. 34.
    Hoffman, P., Labat, G., Robert, A., and Meunier, B., Tetrahedron Lett., 1990, vol. 31, no. 14, p. 1991.CrossRefGoogle Scholar
  35. 35.
    Gouterman, M., The Porphyrins, Dolphin, D., Ed., New York: Academic Press, 1978, vol. 4, p. 1.Google Scholar
  36. 36.
    Spellane, P.J., Gouterman, M., Antipas, A., Kim, S., and Liu, Y.C., Inorg. Chem., 1980, vol. 19, p. 386–391.CrossRefGoogle Scholar
  37. 37.
    Bernshtein, I.Ya., Spektrofotometricheskii analiz v organicheskoi khimii (Spectrophotometric Analysis in Organic Chemistry), Leningrad: Chemistry, 1986, p. 202.Google Scholar
  38. 38.
    Berezin, B.D.J., Porphyrins Phthalocyanines, 2003, vol. 7, p. 715.CrossRefGoogle Scholar
  39. 39.
    Pukhovskaya, S.G., Efimovich, V.A., Semeikin, A.S., Kolodina, E.A., and Golubchikov, O.A., Russ. J. Gen. Chem., 2012, vol. 82, no. 3, p. 476. doi  https://doi.org/10.1134/S107036321203019X CrossRefGoogle Scholar
  40. 40.
    Pukhovskaya, S.G., Efimovich, V.A., Golubchikov, O.A., Russ. J. Inorg. Chem., 2013, vol. 58, no. 4, p. 406. doi  https://doi.org/10.1134/S0036023613040141 CrossRefGoogle Scholar
  41. 41.
    Pukhovskaya, S.G., Guseva, L.G., Malkova, O.V., Semeikin, A.S., and Golubchikov, O.A., Russ. J. Gen. Chem., 2003, vol. 73, p. 473.CrossRefGoogle Scholar
  42. 42.
    Berezin, D.B., Ivanova, Yu.B., and Scheinin, V.B., Russ. J. Phys. Chem. A, 2007, vol. 81, no. 12, p. 1986. doi  https://doi.org/10.1134/S003602440712014X CrossRefGoogle Scholar
  43. 43.
    Gordon, A.J. and Ford, R.A., The Chemist’s Companion. A Handbook of Practical Data, Techniques and References, New York: Wiley, 1972.Google Scholar
  44. 44.
    Kruk, M.M. and Braslavsky, S.E., Photobiol. Sci., 2012, vol. 11, p. 972. doi  https://doi.org/10.1039/C2PP05368C CrossRefGoogle Scholar
  45. 45.
    Kruk, M.M., Starukhin, A.S., and Wouter, M., Macroheterocycles, 2011, vol. 4, no. 2, p. 69. doi  https://doi.org/10.6060/mhc2011.2.01.CrossRefGoogle Scholar
  46. 46.
    Yamauchi, S., Matsukawa, Y., Ohba, Y., and Iwaizumi, M., Inorg. Chem., 1996, vol. 35, p. 2910.CrossRefGoogle Scholar
  47. 47.
    Liulkovich, L.S. and Kruk, M.M., Proceedings of Belarusian State Technological University (BSTU): Physics, Mathematics and Computer Science, 2015, vol. 170, no. 6, p. 63.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussia
  2. 2.G.A. Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  3. 3.Belarusian State Technological UniversityMinskBelarus

Personalised recommendations