Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 6, pp 1271–1278 | Cite as

Conformational Properties of Ethane and Its Analogs in Nanotubes

  • V. V. KuznetsovEmail author
Article

Abstract

Modern approaches to understanding the origin of the internal rotation barrier in ethane and its analogs were reviewed. Computer simulation revealed the inversion of the relative stability of the staggered and eclipsed forms of such compounds in the cavity of nanotubes. Conformational behavior of disilane, methanol, methylmercaptan, hydroxyborane, diborane, and hydrazine molecules in nanotubes was also examined. It was concluded that the orbital interactions energy constitutes an important contribution to stabilization of the staggered form of ethane and its analogs.

Keywords

ethane and its analogs conformer staggered form eclipsed form nanotube computer simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Internal Rotation in Molecules, Orville-Thomas, W.J., Ed., New York: Wiley, 1974.Google Scholar
  2. 2.
    Kundu, T., Pradhan, B., and Singh, B.P., J. Chem. Sci., 2002, vol. 114, no. 6, p. 623. doi  https://doi.org/10.1007/BF02708856 CrossRefGoogle Scholar
  3. 3.
    Liu, S.B., J. Chem. Phys., 2007, vol. 126, no. 24, p. 244103. doi  https://doi.org/10.1063/1.2747247 CrossRefGoogle Scholar
  4. 4.
    Liu, S.B. and Govind, N., J. Phys. Chem. A, 2009, vol. 112, no. 29, p. 6690. doi  https://doi.org/10.1021/jp800376a CrossRefGoogle Scholar
  5. 5.
    Pophristic, V. and Goodman, L., Nature (London), 2001, vol. 411, p. 565. doi  https://doi.org/10.1063/1.1389843 CrossRefGoogle Scholar
  6. 6.
    Rico, J.F., López, R., Ema, I., and Ramirez, G., J. Chem. Phys., 2003, vol. 119, no. 23, p. 12251. doi  https://doi.org/10.1063/1.1624829 CrossRefGoogle Scholar
  7. 7.
    Liu, S.B., Govind, N., and Pedersen, L.G., J. Chem. Phys., 2008, vol. 129, no. 9, p. 094104. doi  https://doi.org/10.1063/1.2976767 CrossRefGoogle Scholar
  8. 8.
    Sadlej-Sosnowska, N., J. Phys. Chem. A, 2003, vol. 107, no. 41, p. 8671. doi  https://doi.org/10.1021/jp030152r CrossRefGoogle Scholar
  9. 9.
    Liu, S.B., J. Phys. Chem. A, 2013, vol. 117, no. 5, p. 962. doi  https://doi.org/10.1021/jp312521z CrossRefGoogle Scholar
  10. 10.
    Liu, S.B. and Schauer, C.K., J. Chem. Phys., 2015, vol. 142, no. 5, p. 054107. doi  https://doi.org/10.1063/1.4907365 CrossRefGoogle Scholar
  11. 11.
    Alipour, M., Chem. Phys., 2014, vol. 434, p. 11. doi  https://doi.org/10.1016/j.chemphys.2014.02.008 CrossRefGoogle Scholar
  12. 12.
    Song, L., Lin, Y., Zhang, Q., and Mo, Y., J. Phys. Chem. A, 2005, vol. 109, no. 10, p. 2310. doi  https://doi.org/10.1021/jp044700s CrossRefGoogle Scholar
  13. 13.
    Mo, Y. and Gao, J., Acc. Chem. Res., 2007, vol. 40, no. 2, p. 113. doi  https://doi.org/10.1021/ar068073w CrossRefGoogle Scholar
  14. 14.
    Mo, Y., WIREs Comput. Mol. Sci., 2011, vol. 1, p. 164. doi  https://doi.org/10.1002/wcms.22 CrossRefGoogle Scholar
  15. 15.
    Esquivel, R.O., Liu, S.B., Angulo, J.C., Dehesa, J.S., Antolin, J., and Molina-Espiritu, M., J. Phys. Chem. A, 2011, vol. 115, no. 17, p. 4406. doi  https://doi.org/10.1021/jp1095272_J CrossRefGoogle Scholar
  16. 16.
    Baranac-Stojanović, M., Struct. Chem., 2015, vol. 26, no. 4, p. 989. doi  https://doi.org/10.1007/s11224-014-0557-5 CrossRefGoogle Scholar
  17. 17.
    Quijano-Quiñones, R.F., Quesadas-Rojas, M., Cuevas, G., and Mena-Rejón, G.J., Molecules, 2012, vol. 17, no. 4, p. 4661. doi  https://doi.org/10.3390/molecules17044661 CrossRefGoogle Scholar
  18. 18.
    Manzetti, S., Adv. Manuf., 2013, vol. 1, no. 3, p. 198. doi  https://doi.org/10.1007/s40436-013-0030-5 CrossRefGoogle Scholar
  19. 19.
    Dappe, Y.J., J. Phys. D: Appl. Phys., 2014, vol. 47, p. 083001. doi  https://doi.org/10.1088/0022-3727/47/8/083001 CrossRefGoogle Scholar
  20. 20.
    Ramachandran, C.N., Fazio, D.D., Sathyamurthy, N., and Aquilanti, V., Chem. Phys. Lett., 2009, vol. 473, p. 146. doi  https://doi.org/10.1016/j.cplett.2009.03.068 CrossRefGoogle Scholar
  21. 21.
    Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., 2005, vol. 54, no. 3, p. 820. doi  https://doi.org/10.1007/s11172-005-0329-x CrossRefGoogle Scholar
  22. 22.
    Kuznetsov, V.V., Russ. J. Org. Chem., 2013, vol. 49, no. 2, p. 313. doi  https://doi.org/10.1134/S1070428013020231 CrossRefGoogle Scholar
  23. 23.
    Kuznetsov, V.V., Russ. J. Org. Chem., 2013, vol. 49, no. 8, p. 1231. doi  https://doi.org/10.1134/S107042801308023X CrossRefGoogle Scholar
  24. 24.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2334. doi  https://doi.org/10.1134/S1070363213120190 CrossRefGoogle Scholar
  25. 25.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 6, p. 1165. doi  https://doi.org/10.1134/S1070363213060285 CrossRefGoogle Scholar
  26. 26.
    Kuznetsov, V.V., Russ. J. Org. Chem., 2014, vol. 50, no. 10, p. 1534. doi  https://doi.org/10.1134/S1070428014100200 CrossRefGoogle Scholar
  27. 27.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 8, p. 1623. doi  https://doi.org/10.1134/S1070363213080264 CrossRefGoogle Scholar
  28. 28.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 7, p. 1455. doi  https://doi.org/10.1134/S1070363213070268 CrossRefGoogle Scholar
  29. 29.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2014, vol. 84, no. 3, p. 433. doi  https://doi.org/10.1134/S1070363214030049 CrossRefGoogle Scholar
  30. 30.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2015, vol. 85, no. 8, p. 1989. doi  https://doi.org/10.1134/S1070363215080356 CrossRefGoogle Scholar
  31. 31.
    Kuznetsov, V.V., Russ. J. Org. Chem., 2014, vol. 50, no. 5, p. 765. doi  https://doi.org/10.1134/S1070428014050285 CrossRefGoogle Scholar
  32. 32.
    Kuznetsov, V.V., Mezhd. Zh. Eksp. Obraz., 2014, no. 8, part 2, p. 58.Google Scholar
  33. 33.
    Gren’, A.I. and Kuznetsov, V.V., Khimiya tsiklicheskikh efirov bornykh kislot (Chemistry of Cyclic Esters of Boronic Acids), Kiev: Naukova Dumka, 1988).Google Scholar
  34. 34.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2014, vol. 84, no. 1, p. 157. doi  https://doi.org/10.1134/S107036321401023X CrossRefGoogle Scholar
  35. 35.
    Kuznetsov, V.V., Mezhd. Zh. Eksp. Obraz., 2015, no. 8, part 1, p. 139.Google Scholar
  36. 36.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 2, p. 231. doi  https://doi.org/10.1134/S1070363216020055 CrossRefGoogle Scholar
  37. 37.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 9, p. 2000. doi  https://doi.org/10.1134/S1070363216090048 CrossRefGoogle Scholar
  38. 38.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 6, p. 1163. doi  https://doi.org/10.1134/S1070363213060273 CrossRefGoogle Scholar
  39. 39.
    Kuznetsov, V.V., Russ. J. Org. Chem., 2014, vol. 50, no. 3, p. 456. doi  https://doi.org/10.1134/S1070428014030312 CrossRefGoogle Scholar
  40. 40.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 9, p. 1790. doi  https://doi.org/10.1134/S1070363213090272 CrossRefGoogle Scholar
  41. 41.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 5, p. 1108. doi  https://doi.org/10.1134/S1070363216050212 CrossRefGoogle Scholar
  42. 42.
    Kuznetsov, V.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 6, p. 1444. doi  https://doi.org/10.1134/S1070363216060359 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ufa State Aviation Technical UniversityUfaRussia
  2. 2.Ufa State Petroleum Technological UniversityUfaRussia

Personalised recommendations