Russian Journal of General Chemistry

, Volume 89, Issue 6, pp 1253–1270 | Cite as

Combined Plasma, Electromagnetic, and Laser Technologies for Creating Waste-Free Industries of a New Technological Structure

  • I. N. TumanovEmail author
  • S. B. Tochilin
  • G. P. Khandorin
  • N. V. Dedov


The paper considers directions for the development of waste-free, large-scale industrial technologies by setting up new technological routs, including wide use of electrical technologies of a new generation and excluding formation of any industrial waste as a matter of principle. The electrical technologies of a new generation are technologies based on the use of generators and flows of technological plasmas in chemical and metallurgical industries, electromagnetic fields of various frequency ranges for the synthesis and processing of metal and ceramic materials, and technological lasers for, for instance, separation of isotopes and for making micro articles for nanotechnology and micrometallurgy applications. All these technologies have become theoretically and technically feasible in combination with purification technologies for liquid and gaseous raw material preparation for the nuclear fuel cycle (NFC), specifically, ion-exchange sorption on synthetic organic ion-exchange resins, fluid extraction, rectification, or sorption on granular fluoride sorbents, which all provide a tool for attaining any level of purification of raw materials. In many processes discussed in the paper, extraction, sorption and rectification can be directly incorporated in electrical technologies, i.e. this means combined technologies for the synthesis, separation, and purification of the products, such as plasma rectification, plasma sorption, etc.

The paper considers a series of such scientifically and technically advanced but still uncommercialized electrical technologies which should form the basis for new environmentally friendly, waste-free industries of a new technological structure. As examples, we focus on several plasma, electromagnetic, and laser technologies, operating on raw materials refined by the above-mentioned purification technologies, including the new technology for the purification of gaseous industrial emissions. These waste-free electrical technologies for the production and processing of inorganic materials were developed for the nuclear industry in the USSR. These are mostly physical technologies insensitive to the chemical formula of the produced or processed materials, and, therefore, they can be used without any problems in other branches of industry.


electrical technologies plasma generators electromagnetic fields frequency range technological laser purification technologies liquid extraction ion-exchange sorption rectification fluoride sorbents refined raw materials uranium uranium hexafluoride fluorine combined purification and electrical technologies separation of isotopes laser separation micrometallurgy nanotechnology ceramic filters ultrafiltration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Donskoi, S.E., Ross. Gaseta, 2015, no. 129, issue 6700.Google Scholar
  2. 2.
    Tumanov, Yu.N., Tochilin, S.B., and Dedov, N.V., Vestn. Ross. Akad. Nauk, 2014, vol. 84, no. 4, p. 311.Google Scholar
  3. 3.
    Tumanov, Yu.N., Elektrotekhnologii novogo pokoleniya v proizvodstve neorganicheskikh materialov: ekologiya, energosberezheniye, kachestvo (Electrotechnologies of a New Generation in the Production of Inorganic Materials: Ecology, Energy Saving, Quality), Moscow: Fizmatlit, 2013).Google Scholar
  4. 4.
    Tumanov, Yu.N. and Tsirelnikov, K.V., Fiz. Khim. Obrabot. Mater., 1992, no. 1, p. 61.Google Scholar
  5. 5.
    Bailey, J.H., Whitehead, C., Gilchrist, P., and Webster, D.A., GB Patent Appl. WO07/34684. 25.09, 1997. IPC B01D 59/48. 59/50.Google Scholar
  6. 6.
    Tumanov, Yu.N., Grigor’ev, G.Yu., and Tumanov, D.Yu., RF Patent for Invention 2453620, 2011.Google Scholar
  7. 7.
    Tumanov, Yu.N., Grigor’ev, G.Yu., and Tumanov, D.Yu., RF Patent for Useful Model 110375, 2011.Google Scholar
  8. 8.
    Copsey, M., Witt, D., Brown, V., and Gilchrist, P., Private Communication, Capenhurst, England, 1998.Google Scholar
  9. 9.
    Solonin, M.I., Atom. Energ., 2005, vol. 98, no. 6, p. 448.Google Scholar
  10. 10.
    Toumanov, I.N., Plasma and High Frequency Processes for Obtaining and Processing Materials in the Nuclear Fuel Cycle, New York: Nova Science, 2009, 2nd ed.Google Scholar
  11. 11.
    Kotel’nikov, G.A. and Nefedova, L.N., Atom. Tekh. Rubezh., 1986, no. 3, p. 8.Google Scholar
  12. 12.
    Enabling Technologies. Technology Development, AEC RSA, 1993.Google Scholar
  13. 13.
    Gordeev, V.F. and Pustogarov, A.V., Termoemissionnye dugovye katody (Thermoionic Emission Arc Cathodes), Moscow: Energoatomizdat, 1988).Google Scholar
  14. 14.
    Tumanov, Yu.N., Grigor’ev, G.Yu., Zaretskii, N.P., Koval’chuk, M.V., Chaivanov, B.B., and Maiorov, A.S., RF Patent 2447537, 2010.Google Scholar
  15. 15.
    Toumanov, I.N., Dobrovolsky, V.I., Sorkin, I.B., et al., FR Invention 2350301, 1978.Google Scholar
  16. 16.
    Toumanov, I.N., Dobrovolsky, V.I., Sorkin, I.B., et al., US Patent 4221762, 09.09.1980.Google Scholar
  17. 17.
    Toumanov, I.N., Dobrovolsky, V.I., Sorkin, I.B., et al., GB Patent 1521384, 29.11.1978.Google Scholar
  18. 18.
    Maiorov, A.A. and Braverman, I.B., Tekhnologiya polucheniya poroshkov keramicheskoi dvuokisi urana (Technology for the Production of Powders of Ceramic Uranium Dioxide), Moscow: Energoatomizdat, 1985).Google Scholar
  19. 19.
  20. 20.
    Urbonaite, S., Johnsson M., and Svensson, G., J. Mater. Sci., 2004, vol. 39, p. 1907.CrossRefGoogle Scholar
  21. 21.
    Morokhov, I.D., Trusov, L.I., and Chizhik, S.P., Ul’tradispersnye metallicheskiye sredy (Ultrafine Metallic Media), Moscow: Atomizdat, 1977).Google Scholar
  22. 22.
    Toumanov, I.N., Trotsenko, N.M., Zagnit’ko, A.V., and Galkin, A.V., Abstracts of Papers, 13th Int. Symp. Plasma Chemistry, Beijing, China, August 18–22, 1997, vol. 4, p. 1886.Google Scholar
  23. 23.
    Porous Cermet Products. Ural Electrochemical Plant, Flyer, 1994.Google Scholar
  24. 24.
    Ceramic Gilters, Kurchatov Institute RRC, Flyer, 1994.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. N. Tumanov
    • 1
    Email author
  • S. B. Tochilin
    • 2
    • 3
  • G. P. Khandorin
    • 3
  • N. V. Dedov
    • 3
  1. 1.Kurchatov Institute National Research CenterMoscowRussia
  2. 2.Siberian Chemical Plant AOSeversk, Tomsk RegionRussia
  3. 3.Moscow Engineering and Physical Institute National Nuclear Research CenterSeversk Technological InstituteSeversk, Tomsk RegionRussia

Personalised recommendations