Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 6, pp 1162–1168 | Cite as

Thermal Decomposition of B(C6F5)3·Py Complex

  • N. A. Shcherbina
  • I. V. Kazakov
  • N. Yu. Gugin
  • A. S. Lisovenko
  • A. V. Pomogaeva
  • Yu. V. Kondrat’ev
  • V. V. Suslonov
  • A. Yu. TimoshkinEmail author
Article
  • 4 Downloads

Abstract

The crystal structure of the new polymorphic modification of B(C6F5)3·Py complex was determined. It was shown by a static tensimetric method using a membrane null manometer that in the condensed phase in an excess of pyridine, B(C6F5)3·Py complex is stable up to 220°C. When temperature rises to 230°C, the complex undergoes irreversible thermal decomposition, with the release of pentafluorobenzene and the polymerization of pyridine. The sublimation enthalpy of B(C6F5)3·Py was determined for the first time by the calorimetric method. The results of quantum chemical calculations using the M06-2X method provide qualitative agreement with the experiment, in contrast to the B3LYP method.

Keywords

tensimetry calorimetry tris(pentafluorophenyl)borane sublimation pyridine donor-acceptor complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewis, G.N., Trans. Faraday Soc., 1923, vol. 19, p. 452. doi  https://doi.org/10.1039/TF9231900452 CrossRefGoogle Scholar
  2. 2.
    Shteinharts, V.D., Soros. Obrazovat. Zh, 1999, no. 3, p. 82.Google Scholar
  3. 3.
    Böhrer, H., Trapp, N., Himmel, D., Schleep, M., and Krossing, I., Dalton Trans., 2015, vol. 44, p. 7489. doi  https://doi.org/10.1039/C4DT02822H CrossRefGoogle Scholar
  4. 4.
    Timoshkin, A.Yu., Suvorov, A.V., and Misharev, A.D., Russ. J. Gen. Chem., 2002, vol. 72, p. 1874. doi  https://doi.org/10.1023/A:1023442708021 CrossRefGoogle Scholar
  5. 5.
    Davydova, E.I., Sevastianova, T.N., Suvorov, A.V., and Timoshkin, A.Y., Coord. Chem. Rev., 2010, vol. 254, p. 2031. doi  https://doi.org/10.1016/j.ccr.2010.04.001 CrossRefGoogle Scholar
  6. 6.
    Massey, A.G. and Park, A.J., J. Organomet. Chem., 1964, vol. 2, p. 245. doi  https://doi.org/10.1016/S0022-328X(00)80518-5 CrossRefGoogle Scholar
  7. 7.
    Pohlmann, J.L.W. and Brinckmann, F.E., Z. Naturforsch. B, 1965, vol. 20, p. 5. doi  https://doi.org/10.1515/znb-1965-0102 CrossRefGoogle Scholar
  8. 8.
    Erker, G., Dalton Trans., 2005, p. 1883. doi  https://doi.org/10.1039/B503688G
  9. 9.
    Piers, W.E. and Chivers, T., Chem. Soc. Rev., 1997, vol. 26, p. 345. doi  https://doi.org/10.1039/CS9972600345 CrossRefGoogle Scholar
  10. 10.
    Focante, F., Mercandelli, P., Sironi, A., and Resconi, L., Coord. Chem. Rev., 2006, vol. 250, p. 170. doi  https://doi.org/10.1016/j.ccr.2005.05.005 CrossRefGoogle Scholar
  11. 11.
    Massey, A.G. and Park, A.J., J. Organomet. Chem., 1966, vol. 5, p. 218. doi  https://doi.org/10.1016/S0022-328X(00)80358-7 CrossRefGoogle Scholar
  12. 12.
    Tanifuji, K., Tajima, S., Ohki, Y., and Tatsumi, K., Inorg. Chem., 2016, vol. 55, p. 4512. doi  https://doi.org/10.1021/acs.inorgchem.6b00352 CrossRefGoogle Scholar
  13. 13.
    Li, L.F., Lee, H.S., Li, H., Yang, X.Q., Nam, K.W., Yoon, W.S., McBreen, J., and Huang, X.J., J. Power Sources, 2008, vol. 184. 2, p. 517. doi  https://doi.org/10.1016/j.jpowsour.2008.03.016 CrossRefGoogle Scholar
  14. 14.
    Doinikov, D.A., Kazakov, I.V., Krasnova, I.S., and Timoshkin, A.Y., Russ. J. Phys. Chem. (A), 2017, vol. 91, p. 1603. doi  https://doi.org/10.1134/S0036024417080088 CrossRefGoogle Scholar
  15. 15.
    McCullough, J.P., Douslin, D.R., Messerly, J.F., Hossenlopp, I.A., Kincheloe, T.C., and Waddington, G., J. Am. Chem. Soc., 1957, vol. 79, p. 4289. doi  https://doi.org/10.1021/ja01573a014 CrossRefGoogle Scholar
  16. 16.
    Abraham R.J., Reid M., J. Chem. Soc., Perkin Trans., 2002, vol. 2, p. 1081. doi  https://doi.org/10.1039/B201789J CrossRefGoogle Scholar
  17. 17.
    Kraft, B.M. and Jones, W.D., J. Organomet. Chem., 2002, vol. 658, p. 132. doi  https://doi.org/10.1016/S0022-328X(02)01640-6 CrossRefGoogle Scholar
  18. 18.
    Smirnov, R.F., Tikhomirov, B.I., Bitsenko, M.I., and Yakubchik, A.I., Vysokomol. Soed., 1971, vol. 13, no. 7, p. 1618.Google Scholar
  19. 19.
    Kovaleva, V.P., Kukina, E.D., Kabanjv, V.A., and Kargin, V.A., Vysokomol. Soed., 1964, vol. 6, no. 9, p. 1676.Google Scholar
  20. 20.
    Kovaleva, V.P., Kukina, E.D., Kabanjv, V.A., and Kargin, V.A., Vysokomol. Soed., 1964, vol. 6, no. 10, p. 1852.Google Scholar
  21. 21.
    Kondrat’ev, Yu.V., Butlak, A.V., Kazakov, I.V., and Timoshkin, A.Y., Thermochim. Acta, 2015, vol. 622, p. 64. doi  https://doi.org/10.1016/j.tca.2015.08.021 CrossRefGoogle Scholar
  22. 22.
    Chickos, J.S. and Acree, W.E., J. Phys. Chem. Ref. Data, 2002, vol. 31, p. 537. doi  https://doi.org/10.1063/1.1475333 CrossRefGoogle Scholar
  23. 23.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. doi  https://doi.org/10.1107/S0021889808042726 CrossRefGoogle Scholar
  24. 24.
    Palatinus, L., Prathapa, S.J., and van Smaalen, S., J. Appl. Cryst., 2012, vol. 45, p. 575. doi  https://doi.org/10.1107/S0021889812016068 CrossRefGoogle Scholar
  25. 25.
    Sheldrick, G.M., Acta Cryst. (C), vol. 71, 2015, p. 3. doi  https://doi.org/10.1107/S2053229614024218 Google Scholar
  26. 26.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D.J., Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT., 2016.Google Scholar
  27. 27.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 1372. doi  https://doi.org/10.1063/1.464304 CrossRefGoogle Scholar
  28. 28.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B., 1988, vol. 37, p. 785. doi  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  29. 29.
    Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, vol. 120, p. 215.  https://doi.org/10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  30. 30.
    Weigend, F. and Ahlrichs, R., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 3297. doi  https://doi.org/10.1039/B508541A CrossRefGoogle Scholar
  31. 31.
    Weigend, F., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 1057. doi  https://doi.org/10.1039/B515623H CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Shcherbina
    • 1
  • I. V. Kazakov
    • 1
  • N. Yu. Gugin
    • 1
  • A. S. Lisovenko
    • 1
  • A. V. Pomogaeva
    • 1
  • Yu. V. Kondrat’ev
    • 1
  • V. V. Suslonov
    • 1
  • A. Yu. Timoshkin
    • 1
    Email author
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations