Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 6, pp 1142–1153 | Cite as

A Solution-Solid Phase Equilibrium in Ternary Systems Containing d-Elements Salts and Mixed Oxygen-Donor Solvent

  • N. A. BogachevEmail author
  • A. O. Gorbunov
  • M. Yu. Skripkin
  • A. B. Nikol’skii
Article
  • 3 Downloads

Abstract

The results of the study of ternary systems containing copper, cobalt, nickel, and cadmium halides and sulfates in binary water-organic and mixed organic solvents are summarized. The influence of the donor-acceptor properties of the ternary system components, the relative dielectric permittivity, and the intermolecular association in the mixed solvent on the solubility of salts and the crystalline structure of solvates is analyzed.

Keywords

d-elements salts solubility ternary systems competing solvation crystal solvates electrolyte solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lyashchenko, A.K., Kontsentrirovannye i nasyshchennye rastvory (Concentrated and Saturated Solutions), Kutepov, A.V., Ed., Moscow: Nauka, 2002, p. 93.Google Scholar
  2. 2.
    Davidyan, A.G., Cand. Sci. (Chem.) Dissertation, St. Petersburg, 2014.Google Scholar
  3. 3.
    Rook, R. and Dost S., Int. J. Eng. Sci., 2007, vol. 45, no. 1, p. 75. doi  https://doi.org/10.1016/j.ijengsci.2006.09.004 CrossRefGoogle Scholar
  4. 4.
    Vito, S., Ifti, M., and Malollari, I., J. Environ. Protect. Ecol., 2011, vol. 12, no. 2, p. 752.Google Scholar
  5. 5.
    Krakowiak, J., Lundberg, D., and Persson I., Inorg. Chem., 2012, vol. 51, no. 18, p. 9598. doi  https://doi.org/10.1021/ic300202f CrossRefGoogle Scholar
  6. 6.
    Persson, I., Lyczko, K., Lundberg, D., Eriksson, L., and Placzek, A., Inorg. Chem., 2011, vol. 50, no. 3, p. 1058. doi  https://doi.org/10.1021/ic1017714 CrossRefGoogle Scholar
  7. 7.
    D’Angelo, P., Migliorati, V., and Guidoni, L., Inorg. Chem., 2010, vol. 49, no. 9, p. 4224. doi  https://doi.org/10.1021/ic9025574 CrossRefGoogle Scholar
  8. 8.
    Eklund, L., Hofer, T.S., and Persson, I., Dalton Trans., 2015, vol. 44, no. 4, p. 1816. doi  https://doi.org/10.1039/C4DT02580F CrossRefGoogle Scholar
  9. 9.
    Bajnóczi, E.G., Czeglédi, E., Kuzmann, E., Homonnay, Z., Bálint, S., Dombi, G., Forgo, P., Berkesi, O., Pálinkó, I., Peintler, G., Sipos, P., and Persson, I., Dalton Trans., 2014, vol. 43, no. 48, p. 17971. doi  https://doi.org/10.1039/C4DT02706J CrossRefGoogle Scholar
  10. 10.
    Marcus, Y., J. Chem. Thermodyn., 2007, vol. 39, no. 10, p. 1338. doi  https://doi.org/10.1016/j.jct.2007.04.003 CrossRefGoogle Scholar
  11. 11.
    Marcus, Y., J. Chem. Soc. Dalton Trans., 1991, no. 9, p. 2265. doi  https://doi.org/10.1039/DT9910002265 CrossRefGoogle Scholar
  12. 12.
    Marcus, Y., J. Solution Chem., 2007, vol. 36, nos. 11–12, p. 1385. doi  https://doi.org/10.1007/s10953-007-9196-4 CrossRefGoogle Scholar
  13. 13.
    Tanaka, F., Kawasaki, Y., and Yamashita, S., J. Chem. Soc. Faraday Trans. 1, 1988, vol. 84, no. 4, p. 1083. doi  https://doi.org/10.1039/F19888401083 CrossRefGoogle Scholar
  14. 14.
    Marcus, Y., J. Chem. Soc. Faraday Trans. 1, 1989, vol. 85, no. 9, p. 3019. doi  https://doi.org/10.1039/F19898503019 CrossRefGoogle Scholar
  15. 15.
    Li, L., Wang, S., Chen, T., Sun, Z., Luo, J., and Hong, M., Cryst. Growth Des., 2012, vol. 12, no. 8, p. 4109. doi  https://doi.org/10.1021/cg300 CrossRefGoogle Scholar
  16. 16.
    Sreekumar, T.K. and Kalidas, C., Ber. Bunsenges. Phys. Chem., 1994, vol. 98, no. 1, p. 102. doi  https://doi.org/10.1002/bbpc.19940980114 CrossRefGoogle Scholar
  17. 17.
    Bogachev, N.A., Lyubichev, D.A., Starova, G.L., Nikol’skii, A.B., and Skripkin, M.Y., Russ. J. Gen. Chem., 2018, vol. 88, no. 4, p. 617. doi  https://doi.org/10.1134/S1070363218040011 CrossRefGoogle Scholar
  18. 18.
    Bogachev, N.A., Starova, G.L., Razzhivin, A.V., Skripkin, M.Y., and Nikol’skii, A.B., Russ. J. Gen. Chem., 2018, vol. 88, no. 1, p. 1. doi  https://doi.org/10.1134/S1070363218010012 CrossRefGoogle Scholar
  19. 19.
    Bogachev, N.A., Tsyrulnikov, N.A., Starova, G.L., Skripkin M.Y., and Nikol’skii, A.B., Russ. J. Gen. Chem., 2017, vol. 87, no. 11, p. 2748. doi  https://doi.org/10.1134/S1070363217110378 CrossRefGoogle Scholar
  20. 20.
    Bogachev, N.A., Tsyrulnikov, N.A., Gorbunov, A.O., Nikol’skii, A.B., Skripkin, M.Y., and Burkov, K.A., Russ. J. Gen. Chem., 2016, vol. 86, no. 11, p. 2405. doi  https://doi.org/10.1134/S1070363216110013 CrossRefGoogle Scholar
  21. 21.
    Gorbunov, A.O., Tsyrul’nikov, N.A., Tikhomirova, A.A., Bogachev, N.A., Skripkin, M.Y., Nikol’skii, A.B., and Pestova, O.N., Russ. J. Gen. Chem., 2016, vol. 86, no. 4, p. 771. doi  https://doi.org/10.1134/S1070363216040022 CrossRefGoogle Scholar
  22. 22.
    Bogachev N.A., Gorbunov, A.O., Nikol’skii, A.B., and Skripkin, M.Y., Russ. J. Gen. Chem., 2016, vol. 86, no. 7, p. 1539. doi  https://doi.org/10.1134/S107036321607001X CrossRefGoogle Scholar
  23. 23.
    Bogachev, N.A., Gorbunov, A.O., Tikhomirova, A.A., Pushikhina, O.S., Skripkin, M.Y., and Nikol’skii, A.B., Russ. J. Gen. Chem., 2015, vol. 85, no. 11, p. 2509. doi  https://doi.org/10.1134/S107036321511002X CrossRefGoogle Scholar
  24. 24.
    Kochemirovsky, V.A., Skripkin, M.Y., Tveryanovich, Y.S., Mereshchenko, A.S., Gorbunov, A.O., Panov, M.S., and Safonov, S.V., Russ. Chem. Rev., 2015, vol. 84, no. 10, p. 1059. doi  https://doi.org/10.1070/RCR4535 CrossRefGoogle Scholar
  25. 25.
    Gorbunov, A.O., Spektor, K.K., Skripkin, M.Y., and Tsyrulnikov, N.A., Russ. J. Gen. Chem., 2012, vol. 82, no. 6, p. 1053. doi  https://doi.org/10.1134/S1070363212060023 CrossRefGoogle Scholar
  26. 26.
    Stepakova, L.V., Skripkin, M.Y., Korneeva, V.V., Grigoriev, Y.M., and Burkov, K.A., Russ. J. Gen. Chem., 2009, vol. 79, no. 6, p. 1053. doi  https://doi.org/10.1134/S1070363209060012 CrossRefGoogle Scholar
  27. 27.
    Bogachev, N.A., Tsyrulnikov, N.A., Makarova, A.A., Tolmachev, M.V., Starova, G.L., Skripkin, M.Y., and Nikol’skii, A.B., Russ. J. Gen. Chem., 2017, vol. 89, no. 5, p. 659. doi  https://doi.org/10.1134/S0044460X19050019 Google Scholar
  28. 28.
    Pearson, R.G., J. Am. Chem. Soc., 1963, vol. 85, no. 22, p. 3533. doi  https://doi.org/10.1021/ja00905a001 CrossRefGoogle Scholar
  29. 29.
    Marcus, Y., J. Phys. Chem., 1987, vol. 91, no. 16, p. 4422. doi  https://doi.org/10.1021/j100300a044 CrossRefGoogle Scholar
  30. 30.
    Marcus, Y., Isr. J. Chem., 1972, vol. 10, no. 3, p. 659. doi  https://doi.org/10.1002/ijch.197200065 CrossRefGoogle Scholar
  31. 31.
    Gutmann, V., Coord. Chem. Rev., 1976, vol. 18, no. 2, p. 225. doi  https://doi.org/10.1016/S0010-8545(00)82045-7 CrossRefGoogle Scholar
  32. 32.
    Haynes, W.M., Lide, D.R., and Bruno, T.J., CRC Handbook of Chemistry and Physics, Boca Raton: CRC Press, Taylor & Francis Group, 2017.Google Scholar
  33. 33.
    Gorbunov, A.O., Cand. Sci. (Chem.) Dissertation, St. Petersburg, 2017.Google Scholar
  34. 34.
    Ravindran, K., and Drumheller, J.E., J. Magn. Magn. Mater., 1992, vol. 104, no. 107, p. 833. doi  https://doi.org/10.1016/0304-8853(92)90382-X CrossRefGoogle Scholar
  35. 35.
    Suzuki, H., Fukushima, N., and Ishiguro, S., Acta Cryst. (C), 1991, vol. 47, no. 9, p. 1838. doi  https://doi.org/10.1107/S0108270191002937 Google Scholar
  36. 36.
    Starova, G.L., Spektor, K.K., and Skripkin, M.Yu., Russ. J. Gen. Chem., 2011, vol. 81, no. 9, p. 1768. doi  https://doi.org/10.1134/S1070363211090052 CrossRefGoogle Scholar
  37. 37.
    Spektor, K.K., Starova, G.L., Skripkin, M.Yu., and Stepakova, L.V., Russ. J. Gen. Chem., 2011, vol. 81, no. 9, p. 1772. doi  https://doi.org/10.1134/S1070363211090064 CrossRefGoogle Scholar
  38. 38.
    Bobicz, D., Kristiansson, O., and Persson, I., J. Chem. Soc. Dalton Trans., 2002, no. 22, p. 4201. doi  https://doi.org/10.1039/b204128f CrossRefGoogle Scholar
  39. 39.
    Hay, R.W., Albedyhl, S., and Lightfoot, P., Trans. Met. Chem., 1998, vol. 23, no. 3, p. 257. doi  https://doi.org/10.1023/A:1015744413792 CrossRefGoogle Scholar
  40. 40.
    Ciccarese, A., Clemente, D.A., Marzotto, A., Valle, G., J. Crystallogr. Spectrosc. Res., 1993, vol. 23, no. 3, p. 223. doi  https://doi.org/10.1007/BF01190050 CrossRefGoogle Scholar
  41. 41.
    Filatov, A.S. and Anderson, J.S., CSD Commun., 2015. doi  https://doi.org/10.5517/cc1k4fpt Google Scholar
  42. 42.
    Nieuwenhuyzen, M. and Wilkins, C.J., J. Chem. Soc. Dalton Trans., 1993, no. 18, p. 2673. doi  https://doi.org/10.1039/DT9930002673 CrossRefGoogle Scholar
  43. 43.
    De Oliveira, O.A., Chagas, P., and Airoldi, C., Inorg. Chem., 1983, vol. 22, no. 1, p. 136. doi  https://doi.org/10.1021/ic00143a030 CrossRefGoogle Scholar
  44. 44.
    Wang, J.-Q., Du, R.-J., Wang, W., Luan, C.-J., and Guo, C., Acta Cryst. (E), 2010, vol. 66, p. m1682. doi  https://doi.org/10.1107/S1600536810048634 Google Scholar
  45. 45.
    Barnes, J.C. and Sesay, L.J, Inorg. Nucl. Chem. Lett., 1977, vol. 13, nos. 3–4, p. 153. doi  https://doi.org/10.1016/0020-1650(77)80085-8 CrossRefGoogle Scholar
  46. 46.
    Nieuwenhuyzen, M., Wen, H., and Wilkins, C.J., Z. Anorg. Allg. Chem., 1992, vol. 615, no. 9, p. 143. doi  https://doi.org/10.1002/zaac.19926150929 CrossRefGoogle Scholar
  47. 47.
    Savinkina, E.V., Zamilatskov, I.A., Kuzovlev, A.S., Albov, D.V., Golubev, D.V., and Chernyshev, V.V., Polyhedron, 2014, vol. 69, p. 68. doi  https://doi.org/10.1016/j.poly.2013.11.024 CrossRefGoogle Scholar
  48. 48.
    Ahuja, I.S. and Rastogi, P., J. Inorg. Nucl. Chem., 1969, vol. 31, no. 11, p. 3690. doi  https://doi.org/10.1016/0022-1902(69)80365-9 CrossRefGoogle Scholar
  49. 49.
    Checoni, R.F. and Volpe, P.L.O., J. Solution Chem., 2010, vol. 39, no. 2, p. 259. doi  https://doi.org/10.1007/s10953-010-9500-6 CrossRefGoogle Scholar
  50. 50.
    Lotze, S., Groot, C.C.M., Vennehaug, C., and Bakker, H.J., J. Phys. Chem. (B), 2015, vol. 119, no. 16, p. 5228. doi  https://doi.org/10.1021/jp512703w CrossRefGoogle Scholar
  51. 51.
    Guang, Y., Masaaki, W., and Toshiyuki, T., J. Mol. Liq., 2001, vol. 94, no. 3, p. 273. doi  https://doi.org/10.1016/S0167-7322(01)00275-6 CrossRefGoogle Scholar
  52. 52.
    Suzuki, T., Fujisawa, M., Takagi, S., and Kimura, T., J. Therm. Anal. Calorim., 2006, vol. 85, no. 3, p. 545. doi  https://doi.org/10.1007/s10973-006-7658-3 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Bogachev
    • 1
    Email author
  • A. O. Gorbunov
    • 1
  • M. Yu. Skripkin
    • 1
  • A. B. Nikol’skii
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations