Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 6, pp 1115–1128 | Cite as

Application of the Matrix Method for Calculating Internal Equilibrium Constants and Complex Formation Microconstants

  • A. G. KudrevEmail author
Article

Abstract

This review is devoted to the matrix method of simulating complex formation in solution. The applicability of the method to the interpretation of spectrometric and calorimetric data for systems containing simultaneously a large number of complex forms is shown. The works where this method was used to calculate the internal equilibrium constants and cis/trans isomerization constants were analyzed. Using the matrix simulation method, the cooperativity of ammonia binding by Mg2+, Ca2+, Zn2+, Cd2+, and Ni2+ ions in aqueous solution was demonstrated. For halide complexes of Pt(II), Pd(II) and Au(III) with a square-planar structure, the difference between the mutual influence of ligands in the cis and trans isomers is shown. The question of verifying the hypothesis about the geometry of the coordination polyhedron of Cu2+ compounds formed in the processes of equilibrium stepwise complex formation in mixed solvents is considered.

Keywords

matrix method matrix model of complex formation intrinsic constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beck, M.T. and Nagypal, I., Chemistry of Complex Equilibria, Budapest: Akad. Kiado, 1989.Google Scholar
  2. 2.
    McGhee, J.D. and von Hippel, P.H., J. Mol. Biol., 1974, vol. 86, p. 469.CrossRefGoogle Scholar
  3. 3.
    Klotz, I.M., Science, 1982, vol. 217, p. 1247. doi  https://doi.org/10.1126/science.6287580 CrossRefGoogle Scholar
  4. 4.
    Kudrev, A.G., Russ. J. Gen. Chem., 2018, vol. 88, p. 2578. doi  https://doi.org/10.1134/S1070363218120198 CrossRefGoogle Scholar
  5. 5.
    Kudrev, A.G., Russ. J. Gen. Chem., 2016, vol. 86, p. 1353. doi  https://doi.org/10.1134/S1070363216060219 CrossRefGoogle Scholar
  6. 6.
    Kudrev, A., J. Anal. Meth. Chem., 2017, vol. 2017, Article ID 6780521. doi  https://doi.org/10.1155/2017/6780521
  7. 7.
    Kudrev, A.G., Russ. J. Gen. Chem., 2014, vol. 84, no. 3, p. 424. doi  https://doi.org/10.1134/S1070363214030037 CrossRefGoogle Scholar
  8. 8.
    Kudrev, A.G., Talanta, 2013, vol. 116, p. 541. doi  https://doi.org/10.1016/j.talanta.2013.07.012 CrossRefGoogle Scholar
  9. 9.
    Kudrev, A.G., Polym. Sci. (A), 2013, vol. 55, p. 586. doi  https://doi.org/10.1134/S0965545X13090022 Google Scholar
  10. 10.
    Kudrev, A.G., Russ. J. Gen. Chem., 2006, vol. 76, p. 1782. doi  https://doi.org/10.1134/S107036320611020X CrossRefGoogle Scholar
  11. 11.
    Kudrev, A.G., Russ. J. Gen. Chem. 2002, vol. 72, p. 1501. doi  https://doi.org/10.1023/A:1023315112622 CrossRefGoogle Scholar
  12. 12.
    Job, P., Ann. Chim., 1928, vol. 9, p. 113.Google Scholar
  13. 13.
    Scatchard, G., Ann. NY Acad. Sci., 1949, vol. 51, p. 660.CrossRefGoogle Scholar
  14. 14.
    Cera, E., Thermodynamic Theory of Site-Specific Binding Processes in Biological Macromolecules, Cambridge: Cambridge University Press, 1995, 296 p.CrossRefGoogle Scholar
  15. 15.
    Nechipurenko, Yu.D., Biophysics, 2014, vol. 59, p. 12.Google Scholar
  16. 16.
    Chaires, J.B., Methods in Enzymology, 2001, vol. 340, p. 3.CrossRefGoogle Scholar
  17. 17.
    Le Vu, H., Buscaglia, R., Chaires, J.B., and Lewis, E.A., Analyt. Biochem., 2013, vol. 434, p. 233. doi  https://doi.org/10.1016/j.ab.2012.11.030 CrossRefGoogle Scholar
  18. 18.
    Bhattacharjee, A.J., Ahluwalia, K., Taylor, S., Jin, O., Nicoludis, J.M., Buscaglia, R., Chaires, J.B., Kornfilt, D.J.P., Marquardt, D.G.S., and Yatsunyk, L.A., Biochimie, 2011, vol. 93, p. 1297. doi  https://doi.org/10.1016/j.biochi.2011.05.038 CrossRefGoogle Scholar
  19. 19.
    Kostromina, N.A., Kumok, V.N., and Srorik, N.A., Khimiya koordinatsionnykh soedinenii (Chemistry of Coordination Compounds), Moscow: Vysshaya Shkola, 1990.Google Scholar
  20. 20.
    Timoshkin, A.Yu. and Kudrev, A.G., Russ. J. Inorg. Chem., 2012, vol. 57, no. 10, p. 1362. doi  https://doi.org/10.1134/S0036023612100142 CrossRefGoogle Scholar
  21. 21.
    Massart, D.L., Vandeginste, B.G.M., Deming, S.N., Michotte, Y., and Kaufman, L., Chemometrics: A Textbook, Amsterdam: Elsevier Publ., 1988.Google Scholar
  22. 22.
    Bronshtein, I.N. and Semendyaev, K.A., Spravochnik po matematike (Handbook of Mathematics), Moscow: Nauka, 1986, 544 p.Google Scholar
  23. 23.
    Kudrev, A.G., Russ. J. Coord. Chem., 2008, vol. 34, p. 34. doi  https://doi.org/10.1134/S1070328408010065 CrossRefGoogle Scholar
  24. 24.
    Kudrev, A.G., Russ. J. Inorg. Chem., 2010, vol. 55, no. 5, p. 814. doi  https://doi.org/10.1134/S0036023610050268 CrossRefGoogle Scholar
  25. 25.
    Grinberg, A.A. and Gel’fman, M.I., Dokl. Akad. Nauk SSSR, 1961, vol. 137, p. 87.Google Scholar
  26. 26.
    Latimer, W., Oxidation Potentials, New York: Prentice Hall, 1952, p. 206.Google Scholar
  27. 27.
    Ginstrup, O. and Leden, I., Acta Chem. Scand., 1967, vol. 21, p. 2689. doi  https://doi.org/10.3891/acta.chem.scand.21-2689 CrossRefGoogle Scholar
  28. 28.
    Ginstrup, O. and Leden, I., Acta Chem. Scand., 1968, vol. 22, p. 1163. doi  https://doi.org/10.3891/acta.chem.scand.22-1163 CrossRefGoogle Scholar
  29. 29.
    Elding, L.I., Acta Chem. Scand., 1970, vol. 24, p. 1331. doi  https://doi.org/10.3891/acta.chem.scand.24-1331 CrossRefGoogle Scholar
  30. 30.
    Elding, L.I., Acta Chem. Scand., 1970, vol. 24, p. 1527, doi  https://doi.org/10.3891/acta.chem.scand.24-1527 CrossRefGoogle Scholar
  31. 31.
    Equilibrium-Constants Database, 2001 Meduza. www.kemi.kth.se/medusa
  32. 32.
    Inczedi, J., Analytical Application of Complex Equilibria, Tyson, J., Ed., Budapest: Academia Kiado, Coll House: Ellis Horwood, 1976.Google Scholar
  33. 33.
    Burger, K. and Dyrsen, D., Acta Chem. Scand., 1963, vol. 17, no. 2, p. 1489. doi  https://doi.org/10.3891/acta.chem.scand.17-1489 CrossRefGoogle Scholar
  34. 34.
    Shchukarev, S.A., Lobaneva, O.A., Ivanova, M.A., and Kononova, M.A., Vestn. Leningr. Gos. Univ., 1961, vol. 10, no. 1, p. 152.Google Scholar
  35. 35.
    Cosen, J., Geochim. Cosmochim. Acta, 2003, vol. 63, no. 7, p. 1331. doi  https://doi.org/10.1016/S0016-7037(02)01271-1 CrossRefGoogle Scholar
  36. 36.
    Kragten, J., Talanta, 1980, vol. 27, p. 375. doi  https://doi.org/10.1016/0039-9140(80)80100-7 CrossRefGoogle Scholar
  37. 37.
    Kudrev, A.G., Russ. J. Gen. Chem., 2009, vol. 79, no. 10, p. 2087. doi  https://doi.org/10.1134/S1070363209100028 CrossRefGoogle Scholar
  38. 38.
    Kudrev, A.G., Talanta, 2012, vol. 101, p. 157. doi  https://doi.org/10.1016/j.talanta.2012.09.014 CrossRefGoogle Scholar
  39. 39.
    NIST Standard Reference Database 46. Critically Selected Stability Constants of Metal Complexes Database, Smith, R.M., Martell, A.E., and Motekaitis, R.J., Eds., Version 7.0 for Windows, 2003. US National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD 20899. http://www.acadsoft.co.uk
  40. 40.
    Bjerrum, J., Metal Ammine Formation in Aqueous Solution: Theory of the Reversible Step Reactions, Copenhagen: Haase, 1957.Google Scholar
  41. 41.
    Wells, A.F., Structural Inorganic Chemistry, Oxford: Clarendon Press, 1984, 5th ed.Google Scholar
  42. 42.
    Cotton, F.A. and Wilkinson, G., Advanced Inorganic Chemistry, New York: John Wiley, 1966.Google Scholar
  43. 43.
    Kudrev A.G., Russ. J. Coord. Chem., 2010, vol. 36, p. 704. doi  https://doi.org/10.1134/S1070328410090113 CrossRefGoogle Scholar
  44. 44.
    Ishiguro, S., Jeliazkova, B.G., and Ohtaki, H., Bull. Chem. Soc. Japan, 1985, vol. 58, no. 6, p. 1749. doi  https://doi.org/10.1246/bcsj.58.1749 CrossRefGoogle Scholar
  45. 45.
    Ozutsumi, K., Ishiguro, S., and Ohtaki, H., Bull. Chem. Soc. Japan, 1988, vol. 61, no. 1, p. 715. doi  https://doi.org/10.1246/bcsj.61.715 CrossRefGoogle Scholar
  46. 46.
    Amuli, C., Elleb, M., Meullemeestre, J., Schwing, M.J., and Vierling, F., Inorg. Chem., 1986, vol. 25, p. 856. doi  https://doi.org/10.1021/ic00226a027 CrossRefGoogle Scholar
  47. 47.
    Ishiguro, S., Jeliazkova, B.G., and Ohtaki, H., Bull. Chem. Soc. Japan, 1985, vol. 58, p. 1143. doi  https://doi.org/10.1246/bcsj.58.1143 CrossRefGoogle Scholar
  48. 48.
    Ishiguro, S., Jeliazkova, B.G., and Ohtaki, H., J. Solution Chem., 1987, vol. 16, no, 1, p. 1. doi  https://doi.org/10.1007/BF00647009 CrossRefGoogle Scholar
  49. 49.
    Ozutsumi, K., Ishiguro, S., and Ohtaki, H., Bull. Chem. Soc. Japan, 1988, vol. 61, no. 3, p. 945. doi  https://doi.org/10.1246/bcsj.61.945 CrossRefGoogle Scholar
  50. 50.
    Ishiguro, S., Jeliazkova, B.G., and Ohtaki, H., Bull. Chem. Soc. Japan, 1989, vol. 62, no. 1, p. 39. doi  https://doi.org/10.1246/bcsj.62.39 CrossRefGoogle Scholar
  51. 51.
    Kudrev, A.G., Talanta, 2008, vol. 75, p. 380. doi  https://doi.org/10.1016/j.talanta.2007.11.034 CrossRefGoogle Scholar
  52. 52.
    Kudrev, A.G., Russ. J. Gen. Chem., 2008, vol. 78, no. 4, p. 513. doi  https://doi.org/10.1134/S1070363208040014 CrossRefGoogle Scholar
  53. 53.
    Usher, A., McPhail, D.C., and Brugger, J., Geochim. Cosmochim. Acta, 2009, vol. 73, p. 3359. doi  https://doi.org/10.1016/j.gca.2009.01.036 CrossRefGoogle Scholar
  54. 54.
    Hashmi, A.S.K. and Hutchings, G.J., Angew. Chem. Int. Ed., 2006, vol. 45, p. 7896. doi  https://doi.org/10.1002/anie.200602454 CrossRefGoogle Scholar
  55. 55.
    Elding, L.I., and Groning, A.-B., Acta Chem. Scand. (A), 1978, vol. 32, no. 9, p. 867. doi  https://doi.org/10.3891/acta.chem.scand.32a-0867 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations