Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 6, pp 1059–1068 | Cite as

Inorganic Associates in a High-Temperature Vapor

  • S. I. LopatinEmail author
  • S. M. Shugurov
Article
  • 5 Downloads

Abstract

Experimental data and results of quantum chemical calculations on the structure and thermodynamic properties of inorganic associates in a high-temperature vapor were systematized. A criterion for thermal stability was proposed, and the dependences of the atomization enthalpies of these compounds on the atomization enthalpies of the anion-forming fragment were revealed.

Keywords

high-temperature mass spectrometry gas phase inorganic associates thermal stability thermodynamic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ionov, N.I., Dokl. Akad. Nauk SSSR, 1948, vol. 59, no. 3, p. 467.Google Scholar
  2. 2.
    Chupka, W.A. and Inghram, M.G., J. Chem. Phys., 1953, vol. 2, no. 2, p. 371. doi  https://doi.org/10.1063/1.1698897 Google Scholar
  3. 3.
    Porter, R.F., Chupka, W.A., and Inghram, M.G., J. Chem. Phys., 1955, vol. 23, no. 1, p. 216. doi  https://doi.org/10.1063/1.1740547 Google Scholar
  4. 4.
    Berkowitz, J., Chupka, W.A., and Inghram, M.G., J. Phys. Chem., 1957, vol. 61, no. 11, p. 1569. doi  https://doi.org/10.1021/j150557a027.Google Scholar
  5. 5.
    Berkowitz, J., Chupka, W.A., Blue, G.D., and Margrave, J.L., J. Phys. Chem., 1959, vol. 63, no. 5, p. 644.Google Scholar
  6. 6.
    Chupka, W.A. and Inghram, M.G., J. Phys. Chem., 1955, vol. 59, no. 2, p. 100. doi  https://doi.org/10.1021/j150524a002 Google Scholar
  7. 7.
    Honig, R.E., J. Chem. Phys., 1954, vol. 22, no. 9, p. 1610. doi  https://doi.org/10.1063/1.1740469 Google Scholar
  8. 8.
    Inghram, M.G. and Drowart, J., Application of Mass Spectrometry in High Temperature Chemistry, in High Temperature Technology, California: McGraw-Hill Book Company Inc., 1959.Google Scholar
  9. 9.
    Aldrich, L.T., J. Appl. Phys., 1951, vol. 22, no. 9, p. 1168. doi  https://doi.org/10.1063/1.1700126 Google Scholar
  10. 10.
    Inghram, M.G., Chupka, W.A., and Porter, R.F., J. Chem. Phys., 1955, vol. 23, no. 11, p. 2159. doi  https://doi.org/10.1063/1.1740686 Google Scholar
  11. 11.
    Drowart, J., Exteen, G., and Verhaegen, G., Trans. Faraday Soc., 1964, vol. 60, no. 503, pt. 11, p. 1920. doi  https://doi.org/10.1039/tf9646001920 Google Scholar
  12. 12.
    Colin, R., Verhaegen, G., and Drowart, J., Trans. Faraday Soc., 1965, vol. 61, no. 511, pt. 7, p. 1364. doi  https://doi.org/10.1039/tf9656101364 Google Scholar
  13. 13.
    Verhaegen, G., Colin, R., Exteen, G., and Drowart J., Trans. Faraday Soc., 1965, vol. 61, no. 511, pt. 7, p. 1372. doi  https://doi.org/10.1039/tf9656101372 Google Scholar
  14. 14.
    Chapka, W.A., Berkowitz, J., and Giese, C.F., J. Chem. Phys., 1959, vol. 30, no. 3, p. 827. doi  https://doi.org/10.1063/1.1730053 Google Scholar
  15. 15.
    Burns, R.P, De Maria, G., Drowart, J., and Inghram, M.G., J.Chem. Phys., 1963, vol. 38, no. 4, p. 1035. doi  https://doi.org/10.1063/1.1733761 Google Scholar
  16. 16.
    Buchler, A., Stauffer, G.L., Klemperer, W., and Wharton, L., J. Chem. Phys., 1963, vol. 39, no. 9, p. 2299. doi  https://doi.org/10.1063/1.1701433 Google Scholar
  17. 17.
    Kambayashi, S. and Kato, E., J. Chem. Thermodyn., 1984, vol. 16, no. 3, p. 241. doi  https://doi.org/10.1016/0021-9614(84)90085-5 Google Scholar
  18. 18.
    Marushkin, K.N., Alikhanyan, A.S., Grinberg, Y.K., Melekh, B.T., Shirokov, S.P., and Gorgoraki, V.I., Russ. J. Inorg. Chem., 1987, vol. 32, no. 12, p. 3036.Google Scholar
  19. 19.
    Kusch, P., J. Chem. Phys., 1954, vol. 22, no. 7, p. 1203. doi  https://doi.org/10.1063/1.1740333 Google Scholar
  20. 20.
    Howard, E.H., J. Am. Chem. Soc., 1954, vol. 76, no. 8, p. 2041. doi  https://doi.org/10.1021/ja01637a003 Google Scholar
  21. 21.
    Dewing, E.W., J. Am. Chem. Soc., 1955, vol. 77, no. 9, p. 2639. doi  https://doi.org/10.1021/ja01614a090 Google Scholar
  22. 22.
    Novikov, G.I., and Gavryuchenkov, F.G., Russ. Chem. Rev., 1967, vol. 36, no. 3, p. 399. doi  https://doi.org/10.1070/RC1967v036n03ABEH001594 Google Scholar
  23. 23.
    Novikov, G.I. and Orekhova, S.E., Problemy khimii i khimicheskoi tekhnologii (Problems of Chemistry and Chemical Technology), Minsk, 1974, p. 12.Google Scholar
  24. 24.
    Buchler, A. and Berkowitz-Mattuck, J.B., Gaseous Ternary Compounds of the Alkali Metals; in Adv. High Temp. Chem., Eyring, L., Ed., New York: Acad. Press, 1967, vol. 1, p. 95.Google Scholar
  25. 25.
    Hastie, J.W., Thermodynamic Studies, by Mass Spectrometry, of Molten Mixed Halide Systems; in Adv. Molten Salt Chem., Braunstein, J., Mamantov, G., and Smith, G.P., Eds., New York: Plenum Press, 1971, p. 225.Google Scholar
  26. 26.
    Hastie, J.W., High Temp. Vapors, New York: Acad. Press, 1975.Google Scholar
  27. 27.
    Schafer, H., Angew. Chem. Intern. Ed., 1976, vol. 15, no. 12, p. 713. doi  https://doi.org/10.1002/anie.197607131 Google Scholar
  28. 28.
    Schafer, H., Adv. Inorg. Chem. Radiochem., 1983, vol. 26, New York: Acad. Press, p. 201.Google Scholar
  29. 29.
    Emmenegger, F.P., Inorg. Chem., 1977, vol. 16, no. 2, p. 343. doi  https://doi.org/10.1021/ic50168a024.Google Scholar
  30. 30.
    Sholtz, V.B. and Sidorov, L.N., Vestn. MGU, Khim., 1972, vol. 13, no. 4, p. 371.Google Scholar
  31. 31.
    Sidorov, L.N. and Zasorin, E.Z., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1975, vol. 18, no. 1, p. 3.Google Scholar
  32. 32.
    Gilles, P.W., Pure Appl. Chem., 1962, vol. 5, p. 543. doi  https://doi.org/10.1351/pac196205030543 Google Scholar
  33. 33.
    Semenov, G.A. and Stolyarova, V.L., Mass-spektro-skopicheskoe issledovanie ispareniya oksidnykh sistem (Mass Spectrometric Study of the Vaporization of Oxide Systems), Leningrad: Nauka, 1990.Google Scholar
  34. 34.
    Hilpert, K., Chemistry of Inorganic Vapors, in Structure and Bonding, Clarke, M.J., Ed., Berlin: Springer, 1990, p. 97.Google Scholar
  35. 35.
    Stolyarova, V.L. and Semenov, G.A., Mass Spectrometric Study of the Vaporization of Oxide Systems, Chichester: J. Wiley and Sons Ltd., 1994.Google Scholar
  36. 36.
    Semenov, G.A., Problemy Sovremennoi khimii koor-dinatsionnykh soedinenii (Problems of Modern Chemistry of Coordination Compounds), Leningrad LGU, 1970, no. 3, p. 16.Google Scholar
  37. 37.
    Semenov, G.A., Issledovanie struktury i energetiki molekul (Study of Structure and Energy Properties of Molecules), Ivanovo, 1986, p. 132.Google Scholar
  38. 38.
    Lopatin, S.I., Russ. J. Gen. Chem., 2007, vol. 77, no. 11, p. 1823. doi  https://doi.org/10.1134/S1070363207110011 Google Scholar
  39. 39.
    Spiridonov, V.P. and Eroshin, E.V., Dokl. Akad. Nauk SSSR, 1968, vol. 180, no. 1, p. 161.Google Scholar
  40. 40.
    Spiridonov, V.P., Brezgin, Yu.A., and Shakhparonov, M.I., J. Struct. Chem., 1971, vol. 12, no. 6, p. 10080.Google Scholar
  41. 41.
    Spiridonov, V.P., Brezgin, Yu.A., and Shakhparonov, M.I., J. Struct. Chem., 1972, vol. 13, no. 2, p. 293. doi  https://doi.org/10.1007/BF00744503 Google Scholar
  42. 42.
    Petrov, K.P., Kulikov, V.A., Ugarov, V.V., and Rambidi, N.G., J. Struct. Chem., 1980, vol. 21, no. 3, p. 310. doi  https://doi.org/10.1007/BF00746850 Google Scholar
  43. 43.
    Kalaichev, Yu.Sh., Petrov, K.P., and Ugarov, V.V., J. Struct. Chem., 1983, vol. 24, no. 5, p. 805. doi  https://doi.org/10.1007/BF00754819 Google Scholar
  44. 44.
    Kalaichev, Yu.Sh., Petrov, K.P., and Ugarov, V.V., J. Struct. Chem., 1983, vol. 24, no. 5, p. 811. doi  https://doi.org/10.1007/BF00754821 Google Scholar
  45. 45.
    Giricheva, N.I., Bobkova, V.A., Morozov, E.V., and Krasnov, K.S., Russ. J. Phys. Chem., 1974, vol. 48, no. 6, p. 1611.Google Scholar
  46. 46.
    Spiridonov, V.P., Erokhin, E.V., and Brezgin, Yu.A., J. Struct. Chem., 1972, vol 13, no. 2, p. 295. doi  https://doi.org/10.1351/pac196205030543 Google Scholar
  47. 47.
    Lopatin, S.I., Shugurov, S.M., and Semenov, G.A., Inorg. Mater., 2005, vol. 41, no. 12, p. 1340. doi  https://doi.org/10.1007/s10789-005-0312-9 Google Scholar
  48. 48.
    Roddatis, N.M., Tolmachev, S.M., Ugarov, V.V., and Rambidi, N.G., J. Struct. Chem., 1974, vol. 15, no. 4, p. 591. doi  https://doi.org/10.1007/BF00747202 Google Scholar
  49. 49.
    Petrov, K.P., Ugarov, V.V., and Rambidi, N.G., J. Struct. Chem., 1980, vol. 21, no. 3, p. 189.Google Scholar
  50. 50.
    Petrov, K.P., Kolesnikov, A.I., Ugarov, V.V., and Rambidi, N.G., J. Struct. Chem, 1980, vol. 21, no. 4, p. 198.Google Scholar
  51. 51.
    Petrov, K.P., Ugarov, V.V., and Rambidi, N.G., J. Struct. Chem, 1981, vol. 22, no. 4, p. 609. doi  https://doi.org/10.1007/BF00784101 Google Scholar
  52. 52.
    Zakrzhevskii, V.G., Boldyrev, A.I., and Charkin, O.P., Chem. Phys. Lettt., 1980, vol. 73, no. 1, p. 54. doi  https://doi.org/10.1016/0009-2614(80)85201-8 Google Scholar
  53. 53.
    Zakrzhevskii, V.G., Boldyrev, A.I., and Charkin, O.P., Chem. Phys. Lett., 1980, vol. 70, no. 1, p. 147. doi  https://doi.org/10.1016/0009-2614(80)80081-9 Google Scholar
  54. 54.
    Sen, K.D., J. Chem. Phys, 1981, vol. 75, no. 2, p. 1043. doi  https://doi.org/10.1063/1.442073 Google Scholar
  55. 55.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. doi  https://doi.org/10.1063/1.464913 Google Scholar
  56. 56.
    Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, Vol. 120, Nos. 1–3, p. 215. doi  https://doi.org/10.1007/s00214-007-0310-x Google Scholar
  57. 57.
    Lopatin, S.I., Panin, A.I., and Shugurov, S.M., Dalton Trans., 2013, vol. 42, no. 2, p. 1210. doi  https://doi.org/10.1039/c2dt31372c Google Scholar
  58. 58.
    Gunina, A.O., Lopatin, S.I., and Shugurov, S.M., Inorg Chem., 2012, vol. 51, no. 9, p. 4918. doi  https://doi.org/10.1021/ic201644f.Google Scholar
  59. 59.
    Lopatin, S.I., Panin, A.I., and Shugurov, S.M., Dalton Trans. 2013, vol. 42, no. 23, p. 8339. doi  https://doi.org/10.1039/c3dt32719a Google Scholar
  60. 60.
    Lopatin, S.I., Panin, A.I., Shugurov, S.M., and Emelyanova, K.A., RSC Advances, 2014, vol. 4, no. 75, p. 39725. doi  https://doi.org/10.1039/c4ra04428b Google Scholar
  61. 61.
    Emelyanova, K.A., Shugurov, S.M., Panin, A.I., and Lopatin, S.I., J. Chem. Thermodyn., 2016, vol. 101 no. 10, p. 337. doi  https://doi.org/10.1016/j.jct.2016.06.009.Google Scholar
  62. 62.
    Bartlett, R.J. and Musial, M., Rev. Mod. Phys., 2007, vol. 79, no. 1, p. 291. doi  https://doi.org/10.1103/RevModPhys.79.291.Google Scholar
  63. 63.
    Hirayama, C., Straw, R. D., and Kun, Z., Thermochim. Acta, 1987, vol. 111, p. 127. doi  https://doi.org/10.1016/0040-6031(87)88041-3 Google Scholar
  64. 64.
    Colin, R. and Drowart, J., J. Chem. Phys., 1962, vol. 37, no. 5, p. 1120. doi  https://doi.org/10.1063/1.1733223 Google Scholar
  65. 65.
    Uy, O.M. and Drowart, J., Trans. Faraday Soc., 1971, vol. 67, p. 1293. doi  https://doi.org/10.1039/TF9716701293 Google Scholar
  66. 66.
    Karabanov, S.G., Belousov, V.I., Sidorov, L.N., Zlomanov, V.P., and Novoselova, A.V., Russ. J. Phys. Chem., 1968, vol. 41, no. 1, p. 110.Google Scholar
  67. 67.
    Sime, R.J. and Margrave, J.L., J. Phys. Chem., 1956, vol. 60, no. 6, p. 810. doi  https://doi.org/10.1021/j150540a033 Google Scholar
  68. 68.
    Stearns, C.A. and Kohl, F.J., J. Phys. Chem., 1973, vol. 77, no. 1, p. 136.Google Scholar
  69. 69.
    Pelino, M., Gingerich, K.A., Haque, R., and Kingcade, J., J. Phys. Chem., 1985, vol. 89, no. 20, p. 4257.Google Scholar
  70. 70.
    Pelino, M., Gingerich, K.A., Haque, R., and Bencivenni, L., J. Phys. Chem., 1986, vol. 90. N. 18, p. 4358.Google Scholar
  71. 71.
    Gupta, S.K. and Gingerich, K.A., High Temp. High Press., 1980, vol. 12, no. 3, p. 273.Google Scholar
  72. 72.
    Gingerich, K. A., J. Chem. Phys., 1974, vol. 60, no. 9, p. 3707.Google Scholar
  73. 73.
    Gupta, S.K. and Gingerich, K.A., J. Chem. Soc. Faraday Trans., 1978, vol. 74, p. 1851. doi  https://doi.org/10.1039/F29787401851 Google Scholar
  74. 74.
    Haque, R. and Gingerich, K.A., J. Chem. Soc. Faraday Trans., 1979, vol. 75, p. 985. doi  https://doi.org/10.1039/F29797500985 Google Scholar
  75. 75.
    Roszak, S. and Balasubramanian, K., J. Phys. Chem. A, 1998, vol. 102, no. 29, p. 6004.Google Scholar
  76. 76.
    Sumathi, R. and Hendrickx, M., J. Phys. Chem. A, 1999, vol. 103, no. 5, p. 585.Google Scholar
  77. 77.
    Roszak, S., and Balasubramanian, K., Chem. Phys. Lett., 1996, Vol. 254, Nos. 3–4, p. 274. doi  https://doi.org/10.1016/0009-2614(96)00287-4 Google Scholar
  78. 78.
    Schafer, H. and Florke, U., Z. Anorg. Allg. Chem., 1981, vol. 478, no. 7, p. 57. doi  https://doi.org/10.1002/zaac.19814780707 Google Scholar
  79. 79.
    Schafer, H. and Florke, U., Z. Anorg. Allgem. Chem., 1981, vol. 479, no. 8, p. 89. doi  https://doi.org/10.1002/zaac.19814790810.Google Scholar
  80. 80.
    Schafer, H., Z. Anorg. Allg. Chem., 1981, vol. 479, no. 6, p. 105. doi  https://doi.org/10.1002/zaac.19814790812 Google Scholar
  81. 81.
    Termodinamicheskie svoistva individualnykh veschestv (Thermodynamic Properties of Individual Substances), Glushko, V.P., Ed., Moscow: Nauka, 1978–1982, vols. 1–4.Google Scholar
  82. 82.
    JANAF Thermochemical Tables, Nat. Bur. Stand. U.S., 3d ed.,1985.Google Scholar
  83. 83.
    Thermicheskie konstanty veshchestv (Thermal Constants of Substances), Glushko, V.P., Ed., Moscow: VINITI, 1965–1981, vols. 1–10.Google Scholar
  84. 84.
    Lopatin, S.I., Shugurov, S.M., Panin, A.I., and Prikhod’ko, I.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 4, p. 778. doi  https://doi.org/10.1134/S1070363216040034 Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations