Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 2, pp 300–308 | Cite as

Synthesis of Gold Glyconanoparticles Based on Thiol-Containing d-Hexose Acylhydrazones and Their Modification by Thiolated Poly(2-deoxy-2-methacryloylamino-D-glucose)

  • A. Yu. ErshovEmail author
  • M. Yu. Vasilyeva
  • M. L. Levit
  • I. V. Lagoda
  • V. A. Baygildin
  • B. M. Shabsels
  • A. A. Martynenkov
  • A. V. Yakimansky
Article
  • 5 Downloads

Abstract

A procedure has been developed for the synthesis of gold glyconanoparticles with an average particle size of 15–30 nm and a low polydispersity index on the basis of natural hexose (d-glucose, d-galactose, d-mannose) sulfanylacetyl-, 3-sulfanylpropanoyl-, and 2-sulfanylbenzoylhydrazones and thiolated poly(2-deoxy-2-methacryloylamino-d-glucose).

Keywords

thiol-containing d-glucose d-galactose and d-mannose acylhydrazones ring—chain tautomerism poly(2-deoxy-2-methacryloylamino-d-glucose gold glyconanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thygesen, M.B. and Jensen, K.J., Carbohydrate Nanotechnology, Stine, K.J., Ed., Hoboken, NJ: Wiley, 2016, chap. 3, p. 79. doi 10.1002/9781118860212.ch3Google Scholar
  2. 2.
    Adak, A.K., Yu, C.-C., and Lin, C.-C., Glycochemical Synthesis: Strategies and Applications, Hung, S.-C. and Zulueta, M.M.L., Eds., Hoboken, NJ: Wiley, 2016, chap. 16, p. 425. doi 10.1002/978111 9006435.ch16Google Scholar
  3. 3.
    García, I., Gallo, J., Marradi, M., and Penadés, S., Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaces, Dendrimers, Nanoparticles, and Hydrogels, Narain, R., Ed., Hoboken, NJ: Wiley, 2011, chap. 6, p. 213. doi 10.1002/9780470944349.ch6Google Scholar
  4. 4.
    Bhattarai, J.K., Neupane, D., Mikhaylov, V., Demchenko, A.V., and Stine, K.J., Carbohydrate, Caliskan, M., Kavakli, I.H., and Öz, G.C., Eds., Istanbul: InTech, 2017, chap. 3. doi 10.5772/66194Google Scholar
  5. 5.
    Nanobiomaterials in Cancer Therapy: Applications of Nanobiomaterials, Grumezescu, A.M., Ed., Oxford: Elsevier, 2016. doi 10.1016 /B978-0-323-42863-7.00002-5Google Scholar
  6. 6.
    Marin, M.J., Schofield, C.L., Field, R.A., and Russell, D.A., Analyst, 2015, vol. 140, p. 59. doi 10.1039/C4AN01466ACrossRefGoogle Scholar
  7. 7.
    de la Fuente, J.M. and Penades, S., Biochim. Biophys. Acta, 2006, vol. 1760, no. 4, p. 636. doi 10.1016/j.bbagen.2005.12.001CrossRefGoogle Scholar
  8. 8.
    Barrientos, A.G., de la Fuente, J.M., Rojas, T.C., Fernandez, A., and Penades, S., Chem. Eur. J., 2003, vol. 9, no. 9, p. 1909. doi 10.1002/CHEM.200204544CrossRefGoogle Scholar
  9. 9.
    Vetro, M., Safari, D., Fallarini, S., Salsabila, K., Lahmann, M., Penades, S., Lay, L., Marradi, M., and Compostella, F., Nanomedicine, 2017, vol. 12, no. 1, p. 13. doi 10.2217/nnm-2016-0306CrossRefGoogle Scholar
  10. 10.
    Bogart, L.K., Pourroy, G., Murphy, C. J., Puntes, V., Pellegrino, T., Rosenblum, D., Peer, D., and Lévy, R., ACS Nano, 2014, vol. 8, no. 4, p. 3107. doi 10.1021/nn500962qCrossRefGoogle Scholar
  11. 11.
    Fedotcheva, T.A., Olenin, A.Yu., Starostin, K.M., Lisichkin, G.V., Banin, V.V., and Shimanovskii, N.L., Pharm. Chem. J., 2015, vol. 49, no. 4, p. 220. doi 10.1007/s11094-015-1260-6CrossRefGoogle Scholar
  12. 12.
    Jazayeri, M.H., Amani, H., Pourfatollah, A.A., Avan, A., Ferns, G.A., and Pazoki-Toroudi, H., Cancer Gene Ther., 2016, vol. 23, p. 365. doi 10.1038/cgt.2016.42CrossRefGoogle Scholar
  13. 13.
    Veerapandian, M., Lim, S.K., Nam, H.M., Kuppannan, G., and Yun, K.S., Anal. Bioanal. Chem., 2010, vol. 398, p. 867. doi 10.1007/s00216-010-3964-5CrossRefGoogle Scholar
  14. 14.
    Perfezou, M., Turner, A., and Merkoci, A., Chem. Soc. Rev., 2012, vol. 41, p. 2606. doi 10.1039/C1CS15134GCrossRefGoogle Scholar
  15. 15.
    Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M., Chem. Rev., 2005, vol. 105, p. 1103. doi 10.1021/cr0300789CrossRefGoogle Scholar
  16. 16.
    Pourceau, G., del Valle-Carrandi, L., Di Gianvincenzo, P., Michelena, O., and Penades, S., RSC Adv., 2014, vol. 4, p. 59284. doi 10. 1039/C4RA11741GCrossRefGoogle Scholar
  17. 17.
    Wang, C., Adv. Mater. Res., 2013, vol. 643, p. 153. doi 10.4028/www.scientific.net/AMR.643.153CrossRefGoogle Scholar
  18. 18.
    Vasileva, M.Yu., Ershov, A.Yu., Baygildin, V.A., Shabsel’s, B.M., Lagoda, I.V., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 6, p. 1205. doi 10.1134/S1070 36321806027CrossRefGoogle Scholar
  19. 19.
    Ershov, A.Yu., Vasileva, M.Yu., Lagoda, I.V., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 6, p. 1199. doi 10.1134/S1070363218060245CrossRefGoogle Scholar
  20. 20.
    Ershov, A.Yu., Vasil’eva, M.Yu., Lagoda, I.V., Baigil’din, V.A., Nasledov, D.G., Kuleshova, L.Yu., and Yakimanskii, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 1, p. 103. doi 10.1134/S1070363218010164CrossRefGoogle Scholar
  21. 21.
    Vasileva, M.Yu., Ershov, A.Yu., Baigildin, V.A., Lagoda, I.V., Kuleshova, L.Yu., Shtro, A.A., Zarubaev, V.V., and Yakimanskii, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 1, p. 109. doi 10.1134/S1070363218010176CrossRefGoogle Scholar
  22. 22.
    Ershov, A.Yu., Lagoda, I.V., Yakimovich, S.I., Zerova, I.V., Pakal’nis, V.V., Mokeev, M.V., and Shamanin, V.V., Russ. J. Org. Chem., 2009, vol. 45, no. 5, p. 740. doi 10.1002/chin. 201008197CrossRefGoogle Scholar
  23. 23.
    Ershov, A.Yu., Lagoda, I.V., Yakimovich, S.I., Zerova, I.V., Pakal’nis, V.V., and Shamanin, V.V., Russ. J. Org. Chem., 2009, vol. 45, no. 10, p. 1488. doi 10.1134/S107042800910011XCrossRefGoogle Scholar
  24. 24.
    Alekseev, V.V., Ershov, A.Yu., Chernitsa, B.V., Doroshenko, V.A., Lagoda, I.V., Yakimovich, S.I., Zerova, I.V., Pakal’nis, V.V., and Shamanin, V.V., Russ. J. Org. Chem., 2010, vol. 46, no. 6, p. 860. doi 10.1134/S1070428010060138CrossRefGoogle Scholar
  25. 25.
    Ershov, A.Yu., Lagoda, I.V., Yakimovich, S.I., Kuleshova, L.Yu., Vasileva, M.Yu., Korovina, I.S., and Shamanin, V.V., Open Access Libr. J., 2016, vol. 3, article no. e2646. doi 10.4236/oalib.1102646Google Scholar
  26. 26.
    Turkevich, J., Gold Bull., 1985, vol. 18, p. 125. doi 10.1007/BF03214694CrossRefGoogle Scholar
  27. 27.
    Toyoshima, M., Oura, T., Fukuda, T., Matsumoto, E., and Miura, Y., Polym. J., 2010, vol. 42, p. 172. doi 10.1038/pj.2009.321CrossRefGoogle Scholar
  28. 28.
    Li, X., Bao, M., Weng, Y., Yang, K., Zhang, W., and Chen, G., J. Mater. Chem. B, 2014, vol. 2, p. 5569. doi 10.1039/c4tb00852aCrossRefGoogle Scholar
  29. 29.
    Parry, A.L., Clemson, N.A., Ellis, J., Bernhard, S.S.R., and Davis, B.G., J. Am. Chem. Soc., 2013, vol. 135, no. 25, p. 9362. doi 10.1021/ja4046857CrossRefGoogle Scholar
  30. 30.
    Housni, A., Cai, H., Liu, S., Suzie, H., Pun, S.H., and Narain, R., Langmuir, 2007, vol. 23, no. 9, p. 5056. doi 10.1021/la070089nCrossRefGoogle Scholar
  31. 31.
    Spain, S.G., Albertin, L., and Cameron, N.R., Chem. Commun., 2006, p. 4198. doi 10.1039/b608383hGoogle Scholar
  32. 32.
    Shan, J. and Tenhu, H., Chem. Commun., 2007, p. 4580. doi 10.1039/b707740hGoogle Scholar
  33. 33.
    Luan, B., Friedrich, T., Zhai, J., Streltsov, V.A., Lindsey, B.W., Kaslin, J., de Jonge, M.D., Zhu, J., Hughes, T.C., and Hao, X., RSC Adv., 2016, vol. 6, p. 23 550. doi 10.1039/c6ra02801bCrossRefGoogle Scholar
  34. 34.
    Lu, W., Ma, W., Lu, J., Li, X., Zhao, Y., and Chen, G., Macromol. Rapid Commun., 2014, vol. 35, p. 827. doi 10.1002/marc.201300905CrossRefGoogle Scholar
  35. 35.
    Willcock, H. and O’Reilly, R.K., Polym. Chem., 2010, no. 1, p. 149. doi 10.1039/b9py00340aCrossRefGoogle Scholar
  36. 36.
    Lowe, A.B., Polym. Chem., 2010, no. 1, p. 17. doi 10.1039/b9py 00216bCrossRefGoogle Scholar
  37. 37.
    Hoyle, S.E. and Bowman, C.N., Angew. Chem., Int. Ed., 2010, vol. 49, p. 1540. doi 10.1002/anie.200903924CrossRefGoogle Scholar
  38. 38.
    Johnke, R.M., Sattler, J.A., and Allison, R.R., Future Oncol., 2014, vol. 10, no. 15, p. 2345. doi 10.2217/FON.14.175CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. Yu. Ershov
    • 1
    • 2
    Email author
  • M. Yu. Vasilyeva
    • 1
  • M. L. Levit
    • 1
  • I. V. Lagoda
    • 3
  • V. A. Baygildin
    • 4
  • B. M. Shabsels
    • 1
  • A. A. Martynenkov
    • 1
  • A. V. Yakimansky
    • 1
    • 4
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  3. 3.State Research Testing Institute of Military MedicineMinistry of Defense of the Russian FederationSt. PetersburgRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations