Russian Journal of General Chemistry

, Volume 89, Issue 2, pp 292–299 | Cite as

Synthesis of Mono- and Disaccharide 4-[(ω-Sulfanylalkyl)oxy]benzoylhydrazones as Potential Glycoligands for Noble Metal Nanoparticles

  • A. Yu. ErshovEmail author
  • A. A. Martynenkov
  • I. V. Lagoda
  • A. V. Yakimansky


A procedure has been developed for the synthesis of previously unknown aldose 4-[(ω-sulfanylalkyl) oxy]benzoylhydrazones (where alkyl is hexyl or decyl and aldoses are D-glucose, D-galactose, D-maltose, and D-lactose) that a repromising glycoligands for noble metal nanoparticles. According to the 1H and 13C NMR data, 4-[(ω-sulfanylalkyl)oxy]benzoylhydrazones derived from D-glucose, D-maltose, and D-lactose in crystal and in DMSO-d6 solution have exclusively the cyclic pyranose structure (α- and β-anomers). D-Galactose 4-[(ω-sulfanylalkyl)oxy]benzoylhydrazones in DMSO-d6 solution exist as tautomeric mixtures of cyclic pyranose and open-chain acylhydrazone structures.


thiol-containing mono- and disaccharide acylhydrazones ring—chain tautomerism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    García, I., Gallo, J., Marradi, M., and Penadés, S., Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaces, Dendrimers, Nanoparticles, and Hydrogels, Narain, R., Ed., Hoboken, NJ: Wiley, 2011, chap. 6, p. 213. doi 10.1002/9780470944349.ch6Google Scholar
  2. 2.
    Adak, A.K., Yu, C.-C., and Lin, C.-C., Glycochemical Synthesis: Strategies and Applications, Hung, S.-C. and Zulueta, M.M.L., Eds., Hoboken, NJ: Wiley, 2016, chap. 16, p. 425. doi 10.1002/978111 9006435.ch16Google Scholar
  3. 3.
    Thygesen, M.B. and Jensen, K.J., Carbohydrate Nanotechnology, Stine, K.J., Ed., Hoboken, NJ: Wiley, 2016, chap. 3, p. 79. doi 10.1002/9781118860212.ch3Google Scholar
  4. 4.
    Nanobiomaterials in Cancer Therapy: Applications of Nanobiomaterials, Grumezescu, A.M., Ed., Oxford: Elsevier, 2016. doi 10.1016 /B978-0-323-42863-7.00002-5Google Scholar
  5. 5.
    Fedotcheva, T.A., Olenin, A.Yu., Starostin, K.M., Lisichkin, G.V., Banin, V.V., and Shimanovskii, N.L., Pharm. Chem. J., 2015, vol. 49, no. 4, p. 220. doi 10.1007/s11094-015-1260-6CrossRefGoogle Scholar
  6. 6.
    Marin, M.J., Schofield, C.L., Field, R.A., and Russell, D.A., Analyst, 2015, vol. 140, p. 59. doi 10.1039/C4AN01466ACrossRefGoogle Scholar
  7. 7.
    de la Fuente, J.M. and Penades, S., Biochim. Biophys. Acta, 2006, vol. 1760, no. 4, p. 636. doi 10.1016/j.bbagen.2005.12.001CrossRefGoogle Scholar
  8. 8.
    Vetro, M., Safari, D., Fallarini, S., Salsabila, K., Lahmann, M., Penades, S., Lay, L., Marradi, M., and Compostella, F., Nanomedicine, 2017, vol. 12, no. 1, p. 13. doi 10.2217/nnm-2016-0306CrossRefGoogle Scholar
  9. 9.
    Jazayeri, M.H., Amani, H., Pourfatollah, A.A., Avan, A., Ferns, G.A., and Pazoki-Toroudi, H., Cancer Gene Ther., 2016, vol. 23, p. 365. doi 10.1038/cgt.2016.42CrossRefGoogle Scholar
  10. 10.
    Veerapandian, M., Lim, S.K., Nam, H.M., Kuppannan, G., and Yun, K.S., Anal. Bioanal. Chem., 2010, vol. 398, p. 867. doi 10.1007/s00216-010-3964-5CrossRefGoogle Scholar
  11. 11.
    Perfezou, M., Turner, A., and Merkoci, A., Chem. Soc. Rev., 2012, vol. 41, p. 2606. doi 10.1039/C1CS15134GCrossRefGoogle Scholar
  12. 12.
    Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M., Chem. Rev., 2005, vol. 105, p. 1103. doi 10.1021/cr0300789CrossRefGoogle Scholar
  13. 13.
    Wang, C., Zhou, Y.-L., Yang, W.-B., Hu, X.-P., and Baker, D.C., Arkivoc, 2009, part (xiv), p. 171. doi 10.3998/ark.5550190.0010.e16Google Scholar
  14. 14.
    van Seeventer, P.B., van Dorst J.A.L.M., Siemerink, J.F., Kamerling, J.P., and Vliegenthart, J.F.G., Carbohydr. Res., 1997, vol. 300, p. 369. doi 10.1016/S0008-6215 (97)00074-8CrossRefGoogle Scholar
  15. 15.
    Yang, H. and Cheng, Q., Analyst, 2017, vol. 142, p. 2654. doi 10.1039/C7AN00428ACrossRefGoogle Scholar
  16. 16.
    Zhang, J. and Misra, R.D.K., Acta Biomater., 2007, vol. 3, p. 838. doi 10.1016/j.actbio.2007.05.011CrossRefGoogle Scholar
  17. 17.
    Chuang, Y.-J., Zhou, X., Pan, Z., and Turchi, C., Biochem. Biophys. Res. Commun., 2009, vol. 389, p. 22. doi 10.1016/j.bbrc.2009.08.079CrossRefGoogle Scholar
  18. 18.
    Zhi, Z., Powell, A., and Turnbull, J., Anal. Chem., 2006, vol. 78, no. 14, p. 4786. doi 10.1021/ac060084fCrossRefGoogle Scholar
  19. 19.
    Coxon, T.P., Fallows, T.W., Gough, J.E., and Webb, S.J., Org. Biomol. Chem., 2015, vol. 13, no. 43, p. 10751. doi 10.1039/C5OB 01591JCrossRefGoogle Scholar
  20. 20.
    Gurav, D., Varghese, O.P., Hamad, O.A., Nilsson, B., Hilborn, J., and Oommen, O.P., Chem. Commun., 2016, vol. 52, p. 966. doi 10.1039/C5CC09215ACrossRefGoogle Scholar
  21. 21.
    Ershov, A.Yu., Vasil’eva, M.Yu., Lagoda, I.V., Baigil’din, V.A., Nasledov, D.G., Kuleshova, L.Yu., and Yakimanskii, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 1, p. 103. doi 10.1134/S1070363218010164CrossRefGoogle Scholar
  22. 22.
    Vasileva, M.Yu., Ershov, A.Yu., Baigildin, V.A., Lagoda, I.V., Kuleshova, L.Yu., Shtro, A.A., Zarubaev, V.V., and Yakimanskii, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 1, p. 109. doi 10.1134/S1070363218010176CrossRefGoogle Scholar
  23. 23.
    Ershov, A.Yu., Vasileva, M.Yu., Lagoda, I.V., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 6, p. 1199. doi 10.1134/S1070363218060245CrossRefGoogle Scholar
  24. 24.
    Vasileva, M.Yu., Ershov, A.Yu., Baygildin, V.A., Shabsel’s, B.M., Lagoda, I.V., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 6, p. 1205. doi 10.1134/S1070 36321806027CrossRefGoogle Scholar
  25. 25.
    Ershov, A.Yu., Lagoda, I.V., Yakimovich, S.I., Kuleshova, L.Yu., Vasileva, M.Yu., Korovina, I.S., and Shamanin, V.V., Open Access. Libr. J., 2016, vol. 3, article no. e2646. doi 10.4236/oalib.1102646Google Scholar
  26. 26.
    Xu, J., Toh, C.L., Liu, X., Wang, S., He, C., and Lu, X., Macromolecules, 2005, vol. 38, no. 5, p. 1684. doi 10.1021/ma047999lCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. Yu. Ershov
    • 1
    • 2
    Email author
  • A. A. Martynenkov
    • 1
  • I. V. Lagoda
    • 3
  • A. V. Yakimansky
    • 1
    • 4
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Institute of TechnologySt. PetersburgRussia
  3. 3.State Research Testing Institute of Military MedicineMinistry of Defense of the Russian FederationSt. PetersburgRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations