Russian Journal of General Chemistry

, Volume 89, Issue 2, pp 255–260 | Cite as

Spectrophotometric Study of Acid-Base Properties of Sulfonated Derivatives of 5,10,15,20-Tetraphenyl-21-thiaand 5,10,15,20-Tetraphenyl-21-oxoporphyrins in the Ethanol–Sulfuric Acid System

  • S. A. Syrbu
  • S. G. PukhovskayaEmail author
  • Yu. B. Ivanova
  • A. S. Vashurin


Spectral and basic properties of heterosubstituted porphyrins of anionic type have studied by means of spectrophotometric titration in comparison with their structural analog — tetraphenylporphine tetrasulfonic acid. The parameters of electronic absorption spectra and concentration ranges of existence of the mono- and diprotonated forms of the studied ligands as well as the constants of basic dissociation have been determined. Comparative analysis of the effect of the reactive site modification and the medium composition on the basicity of the compounds has been performed.


porphyrins spectral properties basic properties macroheterocycles monoheteroporphyrins diheteroporphyrins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kadish, K.M., Smith, K.M., and Guilard, R., The Porphyrin Handbook, San Diego: Academic Press, 2000, vol. 3, p. 364.Google Scholar
  2. 2.
    Kadish, K.M., Smith, K.M., and Guilard, R., The Porphyrin Handbook, New York: Academic Press, 2000, vol. 2, p. 361.Google Scholar
  3. 3.
    Ambre, R.,. Yu, C.-Y, Mane, S., B., Yao, C.-F., and Hung, C.-H., Tetrahedron, 2011, vol. 67, no. 25, p. 4680. doi 10.1016/j.tet.2011.04.034CrossRefGoogle Scholar
  4. 4.
    Broadhurst, M.J., Grigg, R., and Johnson, A.W., J. Chem. Soc. (D), 1969, vol. 24, p. 1449. doi 10.1039/C29690001480Google Scholar
  5. 5.
    Broadhurst, M.J., Grigg, R.,and Johnson, A.W., J. Chem. Soc. (D), 1970, p. 807. doi 10.1039/C29700000807Google Scholar
  6. 6.
    Broadhurst, M.J. and Grigg, R., J. Chem. Soc. (C), 1971, p. 3681. doi 10.1039/J3971000368.1Google Scholar
  7. 7.
    Chmielewski, P.J. and Latos-Grażyński, L., Inorg. Chem., 1998, vol. 37, p. 4179. doi 10.1021/ic971387iCrossRefGoogle Scholar
  8. 8.
    Sridevi, B., Narayanan, S.J., Srinivasan, A., Chandrashekar, T.K., and Subramanian, J., J. Chem. Soc. Dalton Trans., 1998, p. 1979. doi 10.1039/A801934GGoogle Scholar
  9. 9.
    Chmielewski, L., Latos-Grażyński, L., Olmstead, M.M., and Balch, A.L., Chem. Eur. J., 1997, vol. 3, no. 2, p. 268. doi 10.1002/chem.19970030216CrossRefGoogle Scholar
  10. 10.
    Latos-Grażyński, L., Pacholska, E., Chmielewski, P.J., Olmstead, M.M., and Balch, A.L., Inorg. Chem., 1996, vol. 35, p. 566. doi 10.1021/ic950329zCrossRefGoogle Scholar
  11. 11.
    Chatterjee, T., Shetti, V.S., Sharma, R., and Ravikanth, M., Chem. Rev., 2017, vol. 117, no. 4, p. 3254. doi 10.1021/acs.chemrev.6b00496CrossRefGoogle Scholar
  12. 12.
    Lash, T.D. and Ferrence, G.M., Inorg. Chem., 2017, vol. 56, no. 18, p. 11426. doi 10.1021/acs.inorgchem.7b01946CrossRefGoogle Scholar
  13. 13.
    Chmielewski, P.J., Pawlicki, M., Sprutta, N., Szterenberg, L., and Latos-Grażyński, L., Inorg. Chem., 2006, vol. 45, no. 21, p. 8664. doi 10.1021/ic061091pCrossRefGoogle Scholar
  14. 14.
    Tagawa, K., Mori, S., Okujima, T., Takase, M., and Uno, H., Tetrahedron, 2017, vol. 73, p. 794. doi 10.1016/j.tet.2016.12.067CrossRefGoogle Scholar
  15. 15.
    Stilts, C.E., Nelen, M.I., Hilmey, D.G., Davies, S.R., Gollnick, S.O., Oseroff, A.R., Gibson, S.L., Hiff, R., and Detty, M.R., J. Med. Chem., 2000, vol. 43, p. 2403. doi 10.1021/jm000044iCrossRefGoogle Scholar
  16. 16.
    Hilmey, D.G., Abe, M., Nelen, M.I., Stilts, C.E., Baker, G.A., Baker, S.N., Bright, F.V., Davies, S.R., Gollnick, S.O., Oseroff, A.R., Gibson, S.L., Hilf, R., and Detty, M.R., J. Med. Chem., 2002, vol. 45, p. 449. doi 10.1021/jm0103662CrossRefGoogle Scholar
  17. 17.
    You, Y., Gibson, S.L., Hilf, R., Davies, S.R., Oseroff, A.R., Roy, I., Ohulchanskyy, T.Y., Bergey, E.J., and Detty, M.R., J. Med. Chem., 2003, vol. 46, p. 3734. doi 10.1021/jm030136iCrossRefGoogle Scholar
  18. 18.
    O’Connor, A.E., Gallagher, W.M., and Byrne, A.T., Photochem. Photobiol., 2009, vol. 85, no. 5. P 1053. doi 10.1111/j.1751-1097.2009.00585.xGoogle Scholar
  19. 19.
    Marydash, B. and Madhuri, B., J. Med. Chem., 2018, vol. 61, no. 11, p. 5009. doi 10.1021/acs.jmedchem.8b00460CrossRefGoogle Scholar
  20. 20.
    Cassidy, C.M., Tunney, M.M., McCarron, P.A., and Donnelly, R.F., J. Photochem. Photobiol. (B), 2009, vol. 95, no. 2, p. 71. doi 10.1016/j.jphotobiol.2009.01.005CrossRefGoogle Scholar
  21. 21.
    Dickinson, T.A., White, J., Kauer, J.S., and Walt, D.R., Nature, 1996, vol. 382, p. 697. doi 10.1038/382697a0CrossRefGoogle Scholar
  22. 22.
    Ethirajan, M., Chen, Y., Joshi, P., and Pandey, R.K., Chem. Soc. Rev., 2011, vol. 40, p. 340. doi 10.1039/B915149BCrossRefGoogle Scholar
  23. 23.
    Andrianov, V.G. and Malkova, O.V., Macroheterocycles, 2009, vol. 2, p. 130.CrossRefGoogle Scholar
  24. 24.
    Fialkov, Yu.Ya., Rastvoritel’ kak sredstvo upravleniya khimicheskim protsessom (Solvent As a Chemical Process Management Tool), Leningrad: Khimiya, 1990, p. 240.Google Scholar
  25. 25.
    Knyukshto, V.N., Starukhin, A.S., Kruk, M.M., and Gorskii, A.V., J. Appl. Spectr., 2018, vol. 84, no. 6. doi 10.1007/10812-018-0571-2Google Scholar
  26. 26.
    Dolman, D. and Stewart, R., Can. J. Chem., 1967, vol. 45, p. 903. doi 10.1139/v67-156CrossRefGoogle Scholar
  27. 27.
    Sheinin, V.B., Shabunin, S.A., Bobritskaya, E.V., Ageeva, T.A., and Koifman, O.I., Macroheterocycles, 2012, vol. 5, no. 3, p. 252. doi 10.6060/mhc2012.120989sCrossRefGoogle Scholar
  28. 28.
    Weissberger, A., Proskauer, E.S., Riddick, J.A., and Toops, E.E., Organic Solvents: Physical Properties and Methods of Purification, New York: Interscience Publishers, 1955.Google Scholar
  29. 29.
    Gordon, A.J. and Ford, R.A., The Chemist’s Companion. A Handbook of Practical Data, Techniques and References, New York: Wiley, 1972.Google Scholar
  30. 30.
    Pukhovskaya, S., Ivanova, Yu., Nama, D.T., and Vashurin, A., J. Porph. Phthalocyan., 2015, vol. 19, p. 858. doi 10.1142/S1088424615500649CrossRefGoogle Scholar
  31. 31.
    Ivanova, Yu.B., Churakhina, Yu.I., and Mamardashvili, N.Zh., Russ. J. Gen. Chem. 2008, vol. 78, no. 4, p. 673. doi 10.1134/S1070363208040269Google Scholar
  32. 32.
    Bushy, C.A., Dinello, R.K., and Dolphin, D.A., Can. J. Chem., 1975, vol. 53, no. 11, p. 1554. doi 10.1139/v75-219CrossRefGoogle Scholar
  33. 33.
    Ramasany, P., Pandian, P., Tavarekere, K., and Chandrashekar, K., J. Chem. Soc. Dalton Trans., 1993, vol. 1, no. 1, p. 119. doi 10.1039/DT9930000119Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Syrbu
    • 1
  • S. G. Pukhovskaya
    • 2
    Email author
  • Yu. B. Ivanova
    • 1
  • A. S. Vashurin
    • 2
  1. 1.Krestov Institute of Chemistry of Solutions of the Russian Academy of SciencesIvanovoRussia
  2. 2.Ivanovo State University of Chemistry and TechnologyIvanovoRussia

Personalised recommendations