Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 2, pp 185–189 | Cite as

Solubility of Ozone in Organic Solvents

  • N. M. Panich
  • B. G. ErshovEmail author
Article
  • 8 Downloads

Abstract

The possibility of using spectrophotometric method for the evaluation of ozone solubility in highly concentrated solutions by measuring absorption in the Chappuis band directly in the liquid phase has been demonstrated. The solubilities of ozone in various organic solvents have been determined, and its limiting solubility has been calculated. The molar absorption coefficient in the long-wavelength band of ozone has been found to depend on the solvent nature.

Keywords

solubility ozone Henry law organic solvents absorption spectra molar absorption coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Draginskii, V.L., Alekseeva, L.P., and Samoilovich, V.G., Ozonirovanie v protsessakh ochistki vody (Ozonation in Water Treatment Processes), Moscow: DeLi print, 2007.Google Scholar
  2. 2.
    Böhme, A., Ozone Sci. Eng., 1999, vol. 21, no. 2, p. 163. doi 10.1080/01919519908547250CrossRefGoogle Scholar
  3. 3.
    Rice, R.G., Ozone Sci. Eng., 1999, vol. 21, no. 2, p. 99. doi 10.1080/01919519908547244CrossRefGoogle Scholar
  4. 4.
    Le Pauloue, J. and Langlais, B., Ozone Sci. Eng., 1999, vol. 21, no. 2, p. 153. doi 10.1080/01919519908547249CrossRefGoogle Scholar
  5. 5.
    Aleksandrov, Yu.A., Tarunin, B.I., and Perepletchikov, M.L., Zh. Fiz. Khim., 1983, vol. 57, no. 10, p. 2385.Google Scholar
  6. 6.
    Biń, A.K., Ozone Sci. Eng., 2006, vol. 28, no. 2, p. 67. doi 10.1080/01919510600558635CrossRefGoogle Scholar
  7. 7.
    Razumovskii, S.D. and Zaikov, G.E., Ozon i ego reaktsii s organicheskimi soedineniyami (kinetika i mekhanizm) (Ozone and Its Reactions with Organic Compounds. Kinetics and Mechanisms), Moscow: Nauka, 1974.Google Scholar
  8. 8.
    Razumovskii, S.D. and Zaikov, G.E., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1971, vol. 20, no. 4, p. 616. doi 10.1007/BF00853885CrossRefGoogle Scholar
  9. 9.
    Ershov, B.G. and Panich, N.M., Dokl. Phys. Chem., 2015, vol. 465, part 1, p. 279. doi 10.1134/S0012501615110068Google Scholar
  10. 10.
    Panich, N.M. and Ershov, B.G., Russ. J. Gen. Chem., 2018, vol. 88, no. 6, p. 1071. doi 10.1134/S1070363218060038CrossRefGoogle Scholar
  11. 11.
    Bader, H. and Hoigne, J., Ozone Sci. Eng., 1982, vol. 4, no. 4, p. 169. doi10.1080/01919518208550955CrossRefGoogle Scholar
  12. 12.
    Hart, E.J., Sehested, K., and Holoman, J., Anal. Chem., 1983, vol. 55, no. 1, p. 46. doi 10.1021/ac00252a015CrossRefGoogle Scholar
  13. 13.
    Rakovskii, S.K., Anachkov, M., Zaikov, G.E., Stoyanov, O.V., and Sofina, S.Yu., Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 4, p. 11.Google Scholar
  14. 14.
    Borodin, A.A. and Razumovskii, S.D., Kinet. Catal., 2009, vol. 50, no. 3, p. 385. doi 10.1134/S0023158409030070CrossRefGoogle Scholar
  15. 15.
    Shiyin, L., Yiping, Zh., Xiaorong, L., Guoxiang, W., and Lixiao, N., Bull. Environ. Contam. Toxicol., 2011, vol. 87, no. 3, p. 297. doi 10.1007/s00128-011-0352-6CrossRefGoogle Scholar
  16. 16.
    Golovanov, I.B. and Zhenodarova, S.M., Russ. J. Gen. Chem., 2005, vol. 75, no. 11, p. 1795. doi 10.1007/s11176-005-0512-7CrossRefGoogle Scholar
  17. 17.
    Ershov, B.G., Gordeev, A.V., and Seliverstov, A.F., Ozone Sci. Eng., 2017, vol. 39, no. 2, p. 69. doi 10.1080/01919512.2016.1262239CrossRefGoogle Scholar
  18. 18.
    Matvienko, V.G. and Nifantova, L.S., Nauchn. Tr. Donetsk. Nats. Tekh. Unv., Ser. Khim. Khim. Tekhnol., 2008, no. 134 (10), p. 32.Google Scholar
  19. 19.
    Lunin, V.V., Popovich, M.P., and Tkachenko, S.N., Fizicheskaya khimiya ozona (Physical Chemistry of Ozone), Moscow: Mosk. Gos. Univ., 1998.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations