Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 1, pp 106–110 | Cite as

Photochemical Synthesis of Cu2O and Cu2O/Ag Nanoparticles in Polyols

  • E. I. IsaevaEmail author
  • V. V. Gorbunova
  • V. P. Pronin
  • D. M. Dolgintsev
Article
  • 5 Downloads

Abstract

Cu2O nanoparticles were synthesized by photoreduction of copper(II) complex compounds with ethylene glycol and glycerin in the photolite volume. Their optical properties, morphology, phase composition, and photocatalytic activity in methyl orange decomposition were studied. The electrochemical substitution reaction afforded Cu2O/Ag composite nanoparticles. Their increased activity in photodegradation reactions of methyl orange in comparison with unmodified Cu2O particles was found.

Keywords

photolysis copper(II) complex compounds copper(I) oxide nanoparticles silver nanoparticles photocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhuiykov, S., Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices: Properties and Applications, Cambridge, UK: Woodhead Publishing.Google Scholar
  2. 2.
    Nanostructure for Antimicrobial Therapy, Ficai, A. and Grumezescu, A.M., Eds., Bucharest: Elsevier, 2017.Google Scholar
  3. 3.
    Shelovanova, G.N., Patrusheva, T.N., Avilov, N.E., Baranov, O.Yu., and Khol’kin, A.I., Theor. Found. Chem. Eng., 2016. vol. 50, no. 5, p. 793. doi  https://doi.org/10.1134/S0040579516050213 Google Scholar
  4. 4.
    Lin, X., Zhou, R., Zhang, J., and Sheng, X., Nuclear Sci. Techniques, 2010, vol. 21, no. 3, p. 146. doi  https://doi.org/10.13538/j.1001-8042/nst.21.146-151 Google Scholar
  5. 5.
    Hurtado, L., Natividad, R., and García, H., Catal. Commun., 2016, vol. 84, p. 30. doi  https://doi.org/10.1016/j.catcom.2016.05.025 CrossRefGoogle Scholar
  6. 6.
    Jiang, Y., Yuan, H., and Chen, H., Phys. Chem. Chem. Phys., 2015, vol. 17, no. 1, p. 630. doi  https://doi.org/10.1039/c4cp03631j CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Zhao, S., Zhu, S., Sun, Y., and Fang, M., Cryst. Eng. Commun., 2011, vol. 13, p. 2262. doi  https://doi.org/10.1039/C0CE00681E CrossRefGoogle Scholar
  8. 8.
    Zhang, L. and Wang, X., Appl. Phys. (A), 2014, vol. 117, p. 2189. doi  https://doi.org/10.1007/s00339-014-8644-4 CrossRefGoogle Scholar
  9. 9.
    Zhang, W., Yang, X., Zhu, Q., Wang, K., Lu, J., Chen Min, and Yang, Z., Ind. Eng. Chem. Res., 2014, vol. 53, p. 16316. doi  https://doi.org/10.1021/ie502737t.CrossRefGoogle Scholar
  10. 10.
    Kandula, S. and Jeevanandam, P., Eur. J. Inorg. Chem., 2016, vol 10, p. 1548. doi  https://doi.org/10.1002/ejic.201501389 Google Scholar
  11. 11.
    Isaeva, E.I. and Gorbunova, V.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 12, p. 2852. doi  https://doi.org/10.1134/S1070363217120155 CrossRefGoogle Scholar
  12. 12.
    Kovba, L.M. and Trunov, V.K., Rentgenofazovyi analiz (X-ray Phase Analysis), Moscow: MGU, 1976.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. I. Isaeva
    • 1
    Email author
  • V. V. Gorbunova
    • 1
  • V. P. Pronin
    • 1
  • D. M. Dolgintsev
    • 1
  1. 1.Herzen State Pedagogical University of RussiaSt. PetersburgRussia

Personalised recommendations