Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 1, pp 100–105 | Cite as

Synthesis of Cu@Ag Nanoparticles with a Core–Shell Structure Stabilized with Oxyethylated Carboxylic Acid

  • A. I. Titkov
  • O. A. LogutenkoEmail author
  • A. M. Vorob’yov
  • E. Yu. Gerasimov
  • N. V. Bulina
  • Yu. M. Yukhin
  • N. Z. Lyakhov
Article
  • 4 Downloads

Abstract

Bimetallic Cu@Ag nanoparticles with a core–shell structure were synthesized by reduction of copper 2-[2-(2-methoxyethoxy)ethoxy]acetate with hydrazine hydrate in benzyl alcohol, followed by reducing the silver ions on the copper surface by transmetallation reaction. The sinthesized nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and optical spectroscopy methods. The effect of the synthesis conditions such as temperature, time, Ag: Cu molar ratio, the rate of silver nitrate addition, on the uniformity of silver coating on the surface of copper nuclei was studied.

Keywords

copper silver core–shell structure nanoparticles chemical synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Singh, M., Haverinen, H.M., Dhagat, P., and Jabbour, G.E., Adv. Mater., 2010, vol. 22, no. 6, p. 673. doi  https://doi.org/10.1002/adma.200901141 CrossRefGoogle Scholar
  2. 2.
    Tekin, E., Smith, P.J., and Schubert, U.S., Soft Matter., 2008, vol. 4, p. 703. doi  https://doi.org/10.1039/B711984D CrossRefGoogle Scholar
  3. 3.
    Kamyshny, А., Steinke, J., and Magdassi, S., Open Appl. Phys. J., 2010, vol. 4, p. 19. doi  https://doi.org/10.2174/1874183501104010019 CrossRefGoogle Scholar
  4. 4.
    Magdassi, S., Bassa, A., Vinetsky, Y., and Kamyshny, A., Chem. Mater., 2003, vol. 15, p. 2208. doi  https://doi.org/10.1021/cm021804b CrossRefGoogle Scholar
  5. 5.
    Li, W., Chen, M., Wei, J., Li, W., and You, C.J., J. Nanopart. Res., 2013, vol. 15, p. 1949. doi  https://doi.org/10.1007/s11051-013-1949-y CrossRefGoogle Scholar
  6. 6.
    Magdassi, S., Grouchko, M., and Kamyshny, A., Materials, 2010, vol. 3, no. 9, p. 4626. doi  https://doi.org/10.3390/ma3094626 CrossRefGoogle Scholar
  7. 7.
    Tan, K.S. and Cheong, K.Y., J. Nanopart. Res., 2013, vol. 15, no. 54, p. 1537. doi  https://doi.org/10.1007/s11051-013-1537-1 CrossRefGoogle Scholar
  8. 8.
    Khanal, S., Spitale, A., Bhattarai, N., Bahena, D., Velazquez-Salazar, J.J., Mejia-Rosales, S., Mariscal, M.M., and Jose-Yacaman, M., Beilst. J. Nanotechnol., 2014, vol. 5, p. 1371. doi  https://doi.org/10.3762/bjnano.5.150 CrossRefGoogle Scholar
  9. 9.
    Woo, K., Kim, D., Kim, J.S., Lim, S., and Moon, J., Langmuir, 2009, vol. 25, no. 1, p. 429. doi  https://doi.org/10.1021/la802182y CrossRefGoogle Scholar
  10. 10.
    Grouchko, M., Kamyshny, A., and Magdassi, S., J. Mater. Chem., 2009, vol. 19, p. 3057. doi  https://doi.org/10.1039/b821327e CrossRefGoogle Scholar
  11. 11.
    Lee, C., Kim, N.R., Koo, J., Lee, Y.J., and Lee, H.M., Nanotechnology, 2015, vol. 26, no. 45, p. 455601. doi  https://doi.org/10.1088/0957-4484/26/45/455601 CrossRefGoogle Scholar
  12. 12.
    Kim, N.R., Lee, Y.J., Lee, C., Koo, J., and Lee, H.M., Nanotechnology, 2016, vol. 27, no. 34, p. 345706. doi  https://doi.org/10.1088/0957-4484/27/34/345706 CrossRefGoogle Scholar
  13. 13.
    Tsuji, M., Hikino, S., Sano, Y., and Horigome, M., Chem. Lett., 2009, vol. 38, no. 6, p. 518. doi  https://doi.org/10.1246/cl.2009.518 CrossRefGoogle Scholar
  14. 14.
    Tsuji, M., Hikino, S., Tanabe, R., and Yamaguchi, D., Chem. Lett., 2010, vol. 39, p. 334. doi  https://doi.org/10.1246/cl.2010.334 CrossRefGoogle Scholar
  15. 15.
    Yu, X., Li, J., Shi, T., Cheng, C., Liao, G., Fan, J., Li, T., Tang, Z., J. Alloys Compd., 2017, vol. 724, p. 365. doi  https://doi.org/10.1016/j.jallcom.2017.07.045 CrossRefGoogle Scholar
  16. 16.
    Muzikansky, A., Nanikashvili, P., Grinblat, J., and Zitoun, D., J. Phys. Chem. (C), 2013, vol. 117, p. 3093. doi  https://doi.org/10.1021/jp3109545.CrossRefGoogle Scholar
  17. 17.
    Chee, S.S. and Lee, J.H., Mater. Chem. Phys., 2017, vol. 185, p. 176. doi  https://doi.org/10.1016/j.matchemphys.2016.10.020 CrossRefGoogle Scholar
  18. 18.
    Yukhin, Y.M., Titkov, A.I., Logutenko, O.A., Mishchenko, N.V., and Lyakhov, N.Z., Russ. J. Gen. Chem., 2017, vol. 87, no. 12, p. 2870. doi  https://doi.org/10.1134/S1070363217120180 CrossRefGoogle Scholar
  19. 19.
    Saikova, S.V., Vorob’ev, S.A., Nikolaeva, R.B., and Mikhlin, Yu.L., Russ. J. Gen. Chem., 2010, vol. 80, no. 6, p. 1122. doi10.1134/S1070363210060149CrossRefGoogle Scholar
  20. 20.
    Rietveld, H.M., J. Appl. Crystallogr., 1969, vol. 2, no. 2, p. 65. doi  https://doi.org/10.1107/S0021889869006558 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. I. Titkov
    • 1
  • O. A. Logutenko
    • 1
    Email author
  • A. M. Vorob’yov
    • 1
  • E. Yu. Gerasimov
    • 2
  • N. V. Bulina
    • 1
  • Yu. M. Yukhin
    • 1
  • N. Z. Lyakhov
    • 1
  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.G.K. Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations