Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 1, pp 87–95 | Cite as

Luminescent Complexes of Zn(II) and Cd(II) with Chiral Ligands Containing 1,10-Phenanthroline and Natural Monoterpenoids (+)-3-Carene or (+)-Limonene Fragments

  • T. E. KokinaEmail author
  • Yu. P. Ustimenko
  • M. I. Rakhmanova
  • L. A. Sheludyakova
  • A. M. Agafontsev
  • P. E. Plyusnin
  • A. V. Tkachev
  • S. V. Larionov
Article
  • 4 Downloads

Abstract

New chiral 1,10-phenanthroline-derived ligands containing fragments of (+)-3-carene (L1) and (+)-limonene (L2) natural monoterpenoids and their complexes Zn(L1,2)Cl2·1.5H2O, Cd(L1,2)Cl2·nH2O, Zn(L1)Br2·2H2O, and Cd(L1)Br2·2H2O were synthesized. According to NMR and IR spectroscopy data, a conclusion was made about the polynuclear structure of the compounds obtained. Luminescent properties of the compounds obtained were investigated. Lifetimes of the excited states and luminescence quantum yields (φf) were determined. For free ligands, blue fluorescence was observed. In the case of Zn(II) and Cd(II) complexes, luminescence appeared in the green region of the spectrum.

Keywords

terpenes complexes zinc cadmium luminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muller, G., Dalton Trans., 2009, p. 9692. doi  https://doi.org/10.1039/B909430J Google Scholar
  2. 2.
    Wu, T., You, X.-Z., and Boun, P., Coord. Chem. Rev., 2015, vol. 284, p. 1. doi  https://doi.org/10.1016/j.ccr.2014.09.012 CrossRefGoogle Scholar
  3. 3.
    Grassous, J., Chem. Soc. Rev., 2009, vol. 38, no. 3, p. 830. doi  https://doi.org/10.1039/B806203J CrossRefGoogle Scholar
  4. 4.
    Carr, R., Evans, N.H., and Parcer, D., Chem. Soc. Rev., 2012, vol. 41, no. 23, p. 7673. doi  https://doi.org/10.1039/c2cs35242g CrossRefGoogle Scholar
  5. 5.
    Magnetism: Molecules to Materials V, Miller, J.S. and Drillon, M., Eds., Weinheim (Federal Republic of Germany): Wiley-VCH Verlag GmbH, 2002, p. 42.Google Scholar
  6. 6.
    Li, X.-L., Chen, K., Liu, Y., Wang, Z.-X., Wang, T.-W., Zuo, J.-L., Li, Y.-Z., Wang, Y., Zhu, J.S., Liu, J.-M., Song, Y., and You, X.-Z., Angew. Chem. Int. Ed., 2007, vol. 46, no. 36, p. 6820. doi  https://doi.org/10.1002/anie.200701802 CrossRefGoogle Scholar
  7. 7.
    Sharma, S., Chauhan, M., Jamsheera, A., Tabassum, S., and Arijmand, F., Inorg. Chim. Acta, 2017, vol. 458, p. 8. doi  https://doi.org/10.1016/j.ica.2016.12.011 CrossRefGoogle Scholar
  8. 8.
    Bolotin, S.N., Bukov, N.N., Volynkin, V.A., and Panyushkin, V.T., Koordinatsionnaya khimiya prirodnykh aminokislot (Coordination Chemistry of Natural Amino Acids), Moscow: Izd. LKI, 2008.Google Scholar
  9. 9.
    Zhdanov, Yu.A. and Alekseev, Yu.E., Russ. Chem. Rev., 2002, vol. 71, no. 11, p. 969. doi  https://doi.org/10.1070/RC2002v071n11ABEH000758 CrossRefGoogle Scholar
  10. 10.
    Von Zelewsky, A. and Mamula, O., J. Chem. Soc. Dalton Trans., 2000, no. 3, p. 219. doi  https://doi.org/10.1039/A908730C CrossRefGoogle Scholar
  11. 11.
    Mamula, O. and von Zelewsky, A., Coord. Chem. Rev., 2003, vol. 242, nos. 1–2, p. 87. doi  https://doi.org/10.1016/S0010-8545(03)00062-6
  12. 12.
    Tkachev, A.V., Mendeleev Chem. J., 1998, vol. 42, p. 42.Google Scholar
  13. 13.
    Larionov, S.V. and Tkachev, A.V., Mendeleev Chem. J., 2004, vol. 48, p. 154.Google Scholar
  14. 14.
    Larionov, S.V., Russ. J. Coord. Chem., 2012, vol. 38, p. 1. doi  https://doi.org/10.1134/S1070328412010058 CrossRefGoogle Scholar
  15. 15.
    Li, D.-P., Wang, T.-W., Li, Ch.-H., Liu, D.-Sh., Li, Y.-Zh., and You, X.-Z., Chem. Commun., 2010, vol. 46, p. 2929. doi  https://doi.org/10.1039/b924547b Google Scholar
  16. 16.
    Liu, J., Zhang, X.-P., Wu, T., Ma, B.-B., Wang, T.-W., Li, Ch.-H., Li, Y.-Zh., and You, X.-Z., Inorg. Chem., 2012, vol. 51, p. 8649. doi  https://doi.org/10.1021/ic3012475 Google Scholar
  17. 17.
    Muller, G., Bünzli, J.-C.G., Riehl, J.P., Suhr, D., Von Zelewsky, A., and Mürner, H., Chem. Commun., 2002, p. 1522. doi  https://doi.org/10.1039/b203691f Google Scholar
  18. 18.
    Lunkey, J.L., Shirotani, D., Yamanari, K., Kaizaki, S., and Muller, J., Inorg. Chem., 2011, vol. 50, no. 24, p. 12724. doi  https://doi.org/10.1021/ic201851r CrossRefGoogle Scholar
  19. 19.
    Oyler, K. D., Coughlin, F. J., and Bernhard, S., J. Am. Chem. Soc., 2007, vol. 129, no. 1, p. 210. doi  https://doi.org/10.1021/ja067016v CrossRefGoogle Scholar
  20. 20.
    Larionov, S.V., Savel’eva, Z.A., Klevtsova, R.F., Glinskaya, L.A., Uskov, E.M., Popov, S.A., and Tkachev, A.V., J. Struct. Chem., 2010, vol. 51, no. 3, p. 519. doi  https://doi.org/10.1007/s10947-010-0075-2 CrossRefGoogle Scholar
  21. 21.
    Larionov, S.V., Savel’eva, Z.A., Klevtsova, R.F., Glinskaya, L.A., Uskov, E.M., Rakhmanova, M.I., Popov, S.A., and Tkachev, A.V., J. Struct. Chem., 2011, vol. 52, p. 531. doi  https://doi.org/10.1134/S0022476611030127 CrossRefGoogle Scholar
  22. 22.
    Kokina, T.E., Glinskaya, L.A., Tkachev, A.V., Plyusnin, V.F., Tsoy, Yu.V., Bagryanskaya, I.Yu., Vasilyev, E.S., Piryazev, D.A., Sheludyakova, L.A., and Larionov, S.V., Polyhedron, 2016, vol. 117, p. 437. doi  https://doi.org/10.1016/j.poly.2016.06.018 CrossRefGoogle Scholar
  23. 23.
    Kokina, T.E., Glinskaya, L.A., Vasil’ev, E.S., Rakhmanova, M.I., Makarova, S.V., Piryazev, D.A., Korol’kov, I.V., Tkachev, A.V., and Larionov, S.V., J. Struct. Chem., 2017, vol. 58, p. 994. doi  https://doi.org/10.1134/S0022476617050201 CrossRefGoogle Scholar
  24. 24.
    Williams, N.J., Gan, W., Reibenspies, J.H., and Hancock, R.D., Inorg. Chem., 2009, vol. 48, no. 9, p. 1407. doi  https://doi.org/10.1021/ic801403s CrossRefGoogle Scholar
  25. 25.
    Zhang, X.-P., Qi, X.-W., Zhang, D.-S., Zhu, L.-H., Wang, X.-H., Shi, Z.-F., and Lin, Q., Polyhedron, 2017, vol. 126, p. 111. doi  https://doi.org/10.1016/j.poly.2017.01.020 CrossRefGoogle Scholar
  26. 26.
    Bellamy, L.J., The Infrared Spectra of Complex Molecules, New York: John Wiley, 1957.Google Scholar
  27. 27.
    Chen, H.-F., Zhang, M.-J., Wang, M.-S., Yang, W.-B., Guo, X.-G., and Lu, C.-Z., Inorg. Chem. Commun., 2012, vol. 23, p. 123. doi  https://doi.org/10.1016/j.inoche.2012.06.022 CrossRefGoogle Scholar
  28. 28.
    Armaroli, N., De Cola, L., Balzani, V., Sauvage, J.-P., Dietrich-Buchecker, C.O., and Kern, J.-M., J. Chem. Soc. Faraday Trans., 1992, vol. 88, no. 4, p. 553. doi  https://doi.org/10.1039/FT9928800553 CrossRefGoogle Scholar
  29. 29.
    Accorci, G., Listorti, A., Yoosaf, K., and Armaroli, N., Chem. Soc. Rev., 2009, vol. 38, p. 1690. doi  https://doi.org/10.1039/b806408n CrossRefGoogle Scholar
  30. 30.
    Vogler, A. and Kunkely, H., Top. Curr. Chem., 2001, vol. 213, p. 143. doi  https://doi.org/10.1007/3-540-44447-5-3 CrossRefGoogle Scholar
  31. 31.
    Kimura, E. and Koike, T., Chem. Soc. Rev., 1998, vol. 27, no. 3, p. 179. doi  https://doi.org/10.1039/A827179Z CrossRefGoogle Scholar
  32. 32.
    Krapcho, A.P. and Lanza, J.B., J. Org. Prep. Proc. Int., 2009, p. 603. doi  https://doi.org/10.1080/00304940709458644 Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. E. Kokina
    • 1
    • 2
    Email author
  • Yu. P. Ustimenko
    • 3
  • M. I. Rakhmanova
    • 1
  • L. A. Sheludyakova
    • 1
    • 2
  • A. M. Agafontsev
    • 3
  • P. E. Plyusnin
    • 1
    • 2
  • A. V. Tkachev
    • 2
    • 3
  • S. V. Larionov
    • 1
    • 2
  1. 1.A.V. Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia
  3. 3.N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations