Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 1, pp 14–18 | Cite as

Quantum Chemistry, NMR Spectroscopy, and Single-Crystal Diffractometry Methods in the Analysis of Protonation Pathways of 2-Amino-4-benzylsulfanyl-6-methylpyrimidines

  • A. V. ErkinEmail author
  • V. V. Gurzhiy
  • V. I. Krutikov
  • O. V. Neporozhneva
Article
  • 7 Downloads

Abstract

Protonation pathways of 2-amino-4-benzylsulfanyl-6-methylpyrimidines have been investigated by means of semiempirical PM3 quantum-chemical simulation, 13C NMR spectroscopy, and single-crystal diffractometry methods. In the gas phase and in the bipolar aprotic solvent, the protonation involves the N1 atom. The protonation in the crystalline state is characterized by the formation of a branched system of H-bonds, involving the protons of the amino group besides the mentioned nitrogen atom.

Keywords

2-amino-6-methylpyrimidine-4(3H)-thione benzyl chlorides protonation semiempirical PM3 method 13C NMR spectroscopy single-crystal diffractometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geronikaki, A., Fesatidou, M., Kartsev, V., and Macaev, F., Curr. Top. Med. Chem., 2013, vol. 13, no. 21, p. 2684. doi  https://doi.org/10.2174/15680266113136660195 CrossRefGoogle Scholar
  2. 2.
    Öǧretir, C. and Yaman, M., J. Mol. Struct. (THEOCHEM), 1999, vol. 458, no. 3, p. 217. doi  https://doi.org/10.1016/S0166-1280(98)00070-0 CrossRefGoogle Scholar
  3. 3.
    Civcir, P.Ü., J. Phys. Org. Chem., 2001, vol. 14, no. 3, p. 171. doi  https://doi.org/10.1002/poc.349 CrossRefGoogle Scholar
  4. 4.
    Kozlov, A.V., Semenov, V.E., Mikhailov, A.S., Aganov, A.V., Smith, M.B., Reznik, V.S., and Latypov, S.K., J. Phys. Chem. B., 2008, vol. 112, no. 10, p. 3259. doi  https://doi.org/10.1021/jp710952r CrossRefGoogle Scholar
  5. 5.
    Koppel, H.C., Springer, R.H., Robins, R.K., and Cheng, C.C., J. Org. Chem., 1961, vol. 26, no. 3, p. 792. doi  https://doi.org/10.1021/jo01062a037 CrossRefGoogle Scholar
  6. 6.
    Brown, D.J., Evans, F.R., Cowden, W.B., and Fenn, M.D., Eds., New York: John Wiley & Sons, 1994, p. 867.Google Scholar
  7. 7.
    Barlin, G.B., Brown, D.J., and Fenn, M.D., Austral. J. Chem., 1984, vol. 37, no. 11, p. 2391. doi  https://doi.org/10.1071/CH9842391 CrossRefGoogle Scholar
  8. 8.
    CrysAlisPro, Rigaku Oxford Diffraction, Version 1.171.39.35a, 2017.Google Scholar
  9. 9.
    Sheldrick G.M., Acta Crystallogr. (C)., 2015, vol. 71, no. 1, p. 3. doi  https://doi.org/10.1107/S2053229614024218 Google Scholar
  10. 10.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Pushmann, H., J. Appl. Cryst., 2009, vol. 42, no. 2, p. 339. doi  https://doi.org/10.1107/S0021889808042726 CrossRefGoogle Scholar
  11. 11.
    Erkin, A.V., Gurzhii, V.V., and Krutikov, V.I., Russ. J. Gen. Chem., 2015, vol. 85, no. 1, p. 79. doi  https://doi.org/10.1134/S107036321501014 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Erkin
    • 1
    Email author
  • V. V. Gurzhiy
    • 2
  • V. I. Krutikov
    • 1
  • O. V. Neporozhneva
    • 1
  1. 1.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations