Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 11, pp 2368–2373 | Cite as

Hybrid Systems Based on Surfactant-Stabilized Carbon Nano- and Microparticles

  • G. A. GainanovaEmail author
  • F. G. Valeeva
  • R. A. Kushnazarova
  • E. A. Bogoslov
  • M. P. Danilaev
Article
  • 6 Downloads

Abstract

The influence of the nature of stabilizing amphiphilic additives on the dispersion and precipitation of carbon nanoparticles was evaluated. The stabilized systems were tested for adsorption properties with respect to spectral probes and drugs for which purpose the degree of removal and the amount adsorbed were determined spectrophotometrically for dye Orange OT and anti-inflammatory drug indomethacin.

Keywords

surfactant carbon particles adsorption Orange OT indomethacin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miriyala, N., Ouyang, D., Perrie, Y., Lowry, D., and Kirby, D.J., Eur. J. Pharm. Biopharm., 2017, vol. 115, p. 197. doi 10.1016/j.ejpb.2017.03.002CrossRefGoogle Scholar
  2. 2.
    Yang, J., Gao, G., Zhang, X., Ma, Y.H., Jia, H.R., Jiang, Y.W., Wang, Z., and Wu, F.G., Nanoscale, 2017, vol. 9, no. 40, p. 15441. doi 10.1039/c7nr05613cCrossRefGoogle Scholar
  3. 3.
    Itatahine, A., Mehdi, Y.A., Fizir, M., Qi, M., Dramou, P., and He, H., New J. Chem., 2018, vol. 42, p. 1326. doi 10.1039/C7NJ04609JCrossRefGoogle Scholar
  4. 4.
    Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., and Danquah, M.K., Beilstein J. Nanotechnol., 2018, vol. 9, p. 1050. doi 10.3762/bjnano.9.98CrossRefGoogle Scholar
  5. 5.
    Qiao, M., Ran, Q., and Wu, Sh., Appl. Surf. Sci., 2018, vol. 433, p. 975. doi 10.1016/j.apsusc.2017.10.138CrossRefGoogle Scholar
  6. 6.
    Kim, S., Tserengombo, B., Choi, S.-H., Noh, J., Huh, S., Choi, B., Chung, H., Kim, J., and Jeong, H., Int. Commun. Heat Mass Transfer, 2018, vol. 91, p. 95. doi 10.1016/j.icheatmasstransfer.2017.12.011CrossRefGoogle Scholar
  7. 7.
    Maggio, M., Marrazzo, R., Acocella, M.R., Granata, V., and Guerra, G., Carbon, 2018, vol. 127, p. 228. doi 10.1016/j.carbon.2017.11.011CrossRefGoogle Scholar
  8. 8.
    Danilaev, M.P., Zueva, E.M., Bogoslov, E.A., Pudovkin, M.S., and Pol’skii, Y.E., Tech. Phys., 2018, vol. 63, no. 6, p. 857. doi 10.1134/S1063784218060105CrossRefGoogle Scholar
  9. 9.
    Kozak, D., Shibata, E., Iizuka, A., and Nakamura, T., Carbon, 2014, vol. 70, p. 87. doi 10.1016/j.carbon.2013.12.076CrossRefGoogle Scholar
  10. 10.
    Danilaev, M.P., Bogoslov, E.A., Morozov, O.G., Nasybullin, A.R., Pashin, D.M., and Pol’skii, Y.E., J. Eng. Phys. Thermophys., 2015, vol. 88, no. 3, p. 774. doi 10.1007/s10891-015-1250-2CrossRefGoogle Scholar
  11. 11.
    Poklonski, N.A., Ratkevich, S.V., and Vyrko, S.A., J. Phys. Chem. A, 2015, vol. 119, p. 9133. doi 10.1021/acs.jpca.5b03573CrossRefGoogle Scholar
  12. 12.
    Rafique, M.M.A. and Iqba, J., J. Encapsul. Adsorpt. Sci., 2011, vol. 1, p. 29. doi 10.4236/jeas.2011.12004CrossRefGoogle Scholar
  13. 13.
    Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., and Yodh, A.G., Nano Lett., 2003, vol. 3, p. 269. doi 10.1021/nl025924uCrossRefGoogle Scholar
  14. 14.
    Nokhodchi, A., Javadzadeh, Y., Siahi-Shadbad, M.R., and Barzegar-Jalali, M., J. Pharm. Pharm. Sci., 2005, vol. 8, p.18.Google Scholar
  15. 15.
    Hemawan, K.W., Gou, H., and HemLey, R.J., Appl. Phys. Lett., 2015, vol. 107. doi 10.1063/1.4934751Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. A. Gainanova
    • 1
    Email author
  • F. G. Valeeva
    • 1
  • R. A. Kushnazarova
    • 1
  • E. A. Bogoslov
    • 2
  • M. P. Danilaev
    • 2
  1. 1.A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific CenterRussian Academy of SciencesKazan, TatarstanRussia
  2. 2.Tupolev Kazan National Research Technological UniversityKazan, TatarstanRussia

Personalised recommendations