Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 11, pp 2359–2367 | Cite as

Metallomicellar Systems Based on the Complexes of 1-Hexadecyl-4-aza-1-azoniabicyclo[2.2.2]octane Bromide with Transition Metal Nitrates

  • M. R. IbatullinaEmail author
  • E. P. Zhil’tsova
  • S. S. Lukashenko
  • A. D. Voloshina
  • A. S. Sapunova
  • O. A. Lenina
  • I. R. Nizameev
  • M. P. Kutyreva
  • L. Ya. Zakharova
Article
  • 11 Downloads

Abstract

Potentiometry, fluorimetry, dynamic light scattering, and transmission electron microscopy were used to study the aggregation properties of the complexes 1-hexadecyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide with transition metal nitrates [Cu(II), Ni(II), Co(II), and La(III)]. The critical micelle concentrations, aggregation numbers, the degree of counterion binding to micelles, the size of aggregates, and electrokinetic potentials were determined. The complexes exhibited a high antimicrobial activity, and some of them proved to be more potent than the reference drugs.

Keywords

monoquaternized 1,4-diazabicyclo[2.2.2]octane complexes surfactants aggregation biological activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kaur, R. and Mehta, S.K., Coord. Chem. Rev., 2014, vol. 262, no. 1, p. 37. doi: 10.1016/j.ccr.2013.12.014CrossRefGoogle Scholar
  2. 2.
    Mehta, S.K., Kaur, R., and Chaudhary, G.R., Colloids Surf. A, 2012, vol. 403, p. 103. doi 10.1016/j.colsurfa.2012.03.062CrossRefGoogle Scholar
  3. 3.
    Miessler, G.L., Fischer, P.J., and Tarr, D.A., Inorganic Chemistry, Boston: Pearson, 2014, p.359.Google Scholar
  4. 4.
    Dogra, V., Kaur, G., Kaur, A., Kumar, R., and Kumar, S., Colloids Surf. B, 2018, vol. 170, p. 99. doi 10.1016/j.colsurfb.2018.05.069CrossRefGoogle Scholar
  5. 5.
    Kaur, N., Kaur, G., Bhalla, A., Dhau, J.S., and Chaudhary, G.R., Green Chem., 2018, vol. 20, no. 7, p. 1506. doi 10.1039/c7gc03877aCrossRefGoogle Scholar
  6. 6.
    Kaur, G., Kumar, S., Kant, R., Bhanjana, G., Dilbaghi, N., Guru, S.K., Bhushan, S., and Jaglan, S., RSC Adv., 2016, vol. 6, no. 62, p. 57084. doi 10.1039/C6RA09677HCrossRefGoogle Scholar
  7. 7.
    Kaur, G., Kumar, S., Dilbaghi, N., Kaur, B., Kant, R., Guru, S.K., Bhushan, S., and Jaglan, S., Dalton Trans., 2016, vol. 45, no. 15, p. 6582. doi 10.1039/C6DT00312ECrossRefGoogle Scholar
  8. 8.
    Chen, Y., Zhu, Q., Cui, X., Tang, W., Yang, H., Yuan, Y., and Hu, A., Chem. Eur. J., 2014, vol. 20, no. 39, p. 12477. doi 10.1002/chem.201402530CrossRefGoogle Scholar
  9. 9.
    Chu, B.W-K. and Yam, V.W-W., Inorg. Chem., 2001, vol. 40, no. 14, p. 3324. doi 10.1021/ic001326bCrossRefGoogle Scholar
  10. 10.
    Hay, R.W, Govan, N., and Parchment, K.E., Inorg. Chem. Commun., 1998, vol. 1, no. 6, p. 228. doi 10.1016/S1387-7003(09)00062-8CrossRefGoogle Scholar
  11. 11.
    Goedheijt, M.S., Hanson, B.E., Reek, J.N.H., Kamer, P.C.J., and van Leeuwen, P.W.N.M., J. Am. Chem. Soc., 2000, vol. 122, no. 8, p. 1650. doi 10.1021/ja9925610CrossRefGoogle Scholar
  12. 12.
    Danks, M.J., Jervis, H.B., Notwotny, M., Zhou, W., Maschmeyer, T., and Bruce, D.W., Catal. Lett., 2002, vol. 82, nos. 1–2, p. 95. doi 10.1023/A:1020552427133CrossRefGoogle Scholar
  13. 13.
    Hyeon, T., Chem. Commun., 2003, no. 8, p. 927. doi 10.1039/B207789BCrossRefGoogle Scholar
  14. 14.
    Mall, C. and Solanki, P.P., Energy Rep., 2018, vol. 4, p. 23. doi 10.1016/j.egyr.2017.09.001CrossRefGoogle Scholar
  15. 15.
    Aiad, I., Shaban, S.M., Moustafa, H.Y., and Hamed, A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 1, p. 135. doi 10.1134/S2070205118010173CrossRefGoogle Scholar
  16. 16.
    Zhu, Q., Huang, L., Su, J., and Liu, S., Chem. Commun., 2014, vol. 5, no. 9, p. 1107. doi 10.1039/c3cc45244aCrossRefGoogle Scholar
  17. 17.
    Zakharova, L.Y., Gabdrakhmanov, D.R., Ibragimova, A.R., Vasilieva, E.A., Nizameev, I.R., Kadirov, M.K., Ermakova, E.A., Gogoleva, N.E., Faizullin, D.A., Pokrovsky, A.G., Korobeynikov, V.A., Cheresiz, S.V., and Zuev, Y.F., Colloids Surf. B, 2016, vol. 140, p. 269. doi 10.1016/j.colsurfb.2015.12.045CrossRefGoogle Scholar
  18. 18.
    Badawi, A.M., Mohamed, M.A.S., Mohamed, M.Z., and Khowdairy, M.M., J. Cancer. Res. Ther., 2007, vol. 3, no. 4, p. 198. doi 10.4103/0973-1482.38994CrossRefGoogle Scholar
  19. 19.
    Zhiltsova, E.P., Ibatullina, M.R., Lukashenko, S.S., Valeeva, F.G., Pashirova, T.N., Kutyreva, M.P., and Zakharova, L.Ya., Colloid J., 2017, vol. 79, no. 5, p. 621. doi 10.1134/S1061933X17050179CrossRefGoogle Scholar
  20. 20.
    Pashirova, T.N., Zhil’tsova, E.P., Kashapov, R.R., Lukashenko, S.S., Litvinov, A.I., Kadiov, M.K., Zakharova, L.Ya., and Konovalov, A.I., Russ. Chem. Bull., 2010, vol. 59, no. 9, p. 1745. doi 10.1007/s11172-010-0307-9CrossRefGoogle Scholar
  21. 21.
    Zhiltsova, E.P., Pashirova, T.N., Ibatullina, M.R., Lukashenko, S.S., Gubaidullin, A.T., Islamov, D.R., Kataeva, O.N., Kutyreva, M.P., and Zakharova, L.Ya., Phys. Chem. Chem. Phys., 2018, vol. 20, no. 18, p. 12688. doi 10.1039/c8cp01954aCrossRefGoogle Scholar
  22. 22.
    Aguiar, J., Carpena, P., Molina-Boli´var, J.A., and Carnero Ruiz, C., J. Colloid Interface Sci., 2003, vol. 258, no. 1, p. 116. doi 10.1016/S0021-9797(02)00082-6CrossRefGoogle Scholar
  23. 23.
    Moulik, S.P., Haque, M.E., Jana, P.K., and Das, A.R., J. Phys. Chem., 1996, vol. 100, no. 2, p. 701. doi 10.1021/jp9506494CrossRefGoogle Scholar
  24. 24.
    Matsuoka, K., Yoshimura, T., Shikimoto, T., Hamada, J., Yamawaki, M., Honda, C., and Endo, K., Langmuir, 2007, vol. 23, no. 22, p. 10990. doi 10.1021/la701525cCrossRefGoogle Scholar
  25. 25.
    Kalyanasundaran, K. and Thomas, J.K., J. Am. Chem. Soc., 1977, vol. 99, no. 7, p. 2039. doi 10.1021/ja00449a004CrossRefGoogle Scholar
  26. 26.
    Turro, N.J. and Yekta, A., J. Am. Chem. Soc., 1978, vol. 100, no. 18, p. 5951. doi 10.1021/ja00486a062CrossRefGoogle Scholar
  27. 27.
    Zhiltsova, E.P., Ibatullina, M.R., Lukashenko, S.S., Pashirova, T.N., Voloshina, A.D., Zobov, V.V., Ziganshina, S.A., Kutyreva, M.P., and Zakharova, L.Ya., Russ. Chem. Bull., 2016, vol. 65, no. 5, p. 1365. doi 10.1007/s11172-016-1463-3CrossRefGoogle Scholar
  28. 28.
    Faingol’d, I.I., Poletaeva, D.A., Kotelnikova, R.A., Kornev, A.B., Troshin, P.A., Kareev, I.E., Bubnov, V.P., Romanova, V.S., and Kotelnikov, A.I., Russ. Chem. Bull. 2014, vol. 63, no. 5, p. 1107. doi 10.1007/s11172-014-0556-0CrossRefGoogle Scholar
  29. 29.
    Bezkrovnaya, O.N., Pritula, I.M., Puzikov, V.M., Maslov, V.V., Kolybaeva, M.I., Gurkalenko, Yu.A., Vovk, O.M., Lopin, A.V., and Plaksii, A.G., Nanosist., Nanomater., Nanotekhnol., 2010, vol. 8, no. 4, p.927.Google Scholar
  30. 30.
    Ghosh, S. and Dey, J., J. Colloid Interface Sci., 2011, vol. 358, no. 1, p. 208. doi 10.1016/j.jcis.2011.02.054CrossRefGoogle Scholar
  31. 31.
    Margulis, A.B., Danilova, M.A., Zelenikhin, P.V., Ponomarev, V.YA., and Kurinenko, B.M., Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 13, p.145.Google Scholar
  32. 32.
    Subuddhi, U. and Mishra, A.K., Colloids Surf. B, 2007, vol. 57, no. 1, p. 102. doi 10.1016/j.colsurfb.2007.01.009CrossRefGoogle Scholar
  33. 33.
    Zhang, X., Jackson, J.K., and Burt, H.M., J. Biochem. Biophys. Meth., 1996, vol. 3, no. 3, p. 145. doi 10.1016/0165-022X(95)00032-MCrossRefGoogle Scholar
  34. 34.
    Berezovskaya, I.V., Pharm. Chem. J., 2003, vol. 37, no. 3, p. 139. doi 10.1023/A: 1024586630954CrossRefGoogle Scholar
  35. 35.
    Zhiltsova, E.P., Pashirova, T.N., Kashapov, R.R., Gaisin, N.K., Gnezdilov, O.I., Lukashenko, S.S., Voloshina, A.D., Kulik, N.V., Zobov, V.V., Zakharova, L.Y., and Konovalov, A.I., Russ. Chem. Bull., 2012, vol. 61, no. 1, p. 113. doi 10.1007/s11172-012-0016-7CrossRefGoogle Scholar
  36. 36.
    Voloshina, A.D., Semenov, V.E., Strobykina, A.S., Kulik, N.V., Krylova, E.S., Zobov, V.V., and Reznik, V.S., Russ. J. Bioorg. Chem., 2017, vol. 43, no. 2, p. 170. doi 10.1134/S1068162017020170CrossRefGoogle Scholar
  37. 37.
    Polyak, M.S., Laboratornoe obespechenie antibiotikoterapii (Laboratory Supply of Antibiotics Therapy), St. Petersburg: Anatoliya, 2012, p.27.Google Scholar
  38. 38.
    Zakharova, L.Ya., Pashirova, T.N., Kashapov, R.R., Zhil’tsova, E.P., Gaisin, N.K., Gnezdilov, O.I., Konov, A.B., Lukashenko, S.S., and Magdeev, I.M., Kinet. Catal., 2011, vol. 52, no. 2, p. 179. doi 10.1134/S0023158411020236CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. R. Ibatullina
    • 1
    Email author
  • E. P. Zhil’tsova
    • 1
  • S. S. Lukashenko
    • 1
  • A. D. Voloshina
    • 1
  • A. S. Sapunova
    • 1
  • O. A. Lenina
    • 1
  • I. R. Nizameev
    • 2
  • M. P. Kutyreva
    • 3
  • L. Ya. Zakharova
    • 1
  1. 1.A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific CenterRussian Academy of SciencesKazan, TatarstanRussia
  2. 2.Tupolev Kazan National Research Technological UniversityKazan, TatarstanRussia
  3. 3.Butlerov Chemical InstituteKazan (Volga Region) Federal UniversityKazan, TatarstanRussia

Personalised recommendations