Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 11, pp 2328–2334 | Cite as

Spatial Structure of Tetrasubstituted Thiacalix[4]arenes Containing L-Tryptophan Fragments in Solution

  • P. L. Padnya
  • O. S. Potrekeeva
  • E. E. Bayarashov
  • I. I. Stoikov
Article
  • 13 Downloads

Abstract

The steric structure of the cone and 1,3-alternate stereoisomers of p-tert-butylthiacalix[4]arenes bearing in the lower rim four substituents containing amide and ammonium groups as well as L-tryptophan residues was studied by 1Н, 13С, 1Н–1Н NOESY, and 1Н–13С HSQC NMR spectroscopy. The mutual repulsion of the charged ammonium groups and the presence of intramolecular hydrogen bonds in the synthesized compounds can make the peptide bond with the tryptophan residue sterically accessible for enzymes.

Keywords

thiacalix[4]arene ammonium salts tryptophan NMR spectroscopy macrocycles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pieters, B., van Eldijk, M., Nolte, R., and Mecinovic, J., Chem. Soc. Rev., 2016, vol. 45, p. 24. doi 10.1039/C5CS00157ACrossRefGoogle Scholar
  2. 2.
    Tavano, O.L., Berenguer-Murcia, A., Secundo, F., and Fernandez-Lafuente, R., Compr. Rev. Food Sci. F., 2018, vol. 17, p. 412. doi 10.1111/1541-4337.12326CrossRefGoogle Scholar
  3. 3.
    Solovieva, S.E., Burilov, V.A., and Antipin, I.S., Macroheterocycles, 2017, vol. 10, p. 134. doi 10.6060/mhc170512aCrossRefGoogle Scholar
  4. 4.
    Gaynanova, G.A., Bekmukhametova, A.M., Kashapov, R.R., Ziganshina, A.Y., and Zakharova, L.Y., Chem. Phys. Lett., 2016, vol. 652, p. 190. doi 10.1016/j.cplett.2016.04.021CrossRefGoogle Scholar
  5. 5.
    Jain, V.K. and Kanaiya, P.H., Russ. Chem. Rev., 2011, vol. 80, p. 75. doi 10.1070/RC2011v080n01ABEH004127CrossRefGoogle Scholar
  6. 6.
    Kobayashi, K. and Yamanaka, M., Chem. Soc. Rev., 2015, vol. 44, p. 449. doi 10.1039/C4CS00153BCrossRefGoogle Scholar
  7. 7.
    Xue, M., Yang, Y., Chi, X., Zhang, Z., and Huang, F., Acc. Chem. Res., 2012, vol. 45, p. 1294. doi 10.1021/ar2003418CrossRefGoogle Scholar
  8. 8.
    Rebek, J.Jr., Chem. Commun., 2000, p. 637. doi 10.1039/A910339MGoogle Scholar
  9. 9.
    del Valle, E.M., Process Biochem., 2004, vol. 39, p. 1033. doi 10.1016/S0032-9592(03)00258-9CrossRefGoogle Scholar
  10. 10.
    Tiwari, G., Tiwari, R., and Rai, A.K., J. Pharm. Bioallied. Sci., 2010, vol. 2, p. 72. doi 10.4103/0975-7406.67003CrossRefGoogle Scholar
  11. 11.
    Kumari, H., Deakyne, C.A., and Atwood, J.L., Acc. Chem. Res., 2014, vol. 47, p. 3080. doi 10.1021/ar500222wCrossRefGoogle Scholar
  12. 12.
    Zhang, H., Liu, Z., and Zhao, Y., Chem. Soc. Rev., 2018, vol. 47, p. 5491. doi 10.1039/C8CS00037ACrossRefGoogle Scholar
  13. 13.
    Zhang, H. and Zhao, Y., Chemistry, 2013, vol. 19, p. 16862. doi 10.1002/chem.201301635CrossRefGoogle Scholar
  14. 14.
    Burilov, V.A., Nugmanov, R.I., Ibragimova, R.R., Solovieva, S.E., and Antipin, I.S., Mendeleev Commun., 2015, vol. 25, p. 177. doi 10.1016/j.mencom.2015.05.005CrossRefGoogle Scholar
  15. 15.
    Burilov, V.A., Mironova, D.A., Ibragimova, R.R., Solovieva, S.E., König, B., and Antipin, I.S., RSC Adv., 2015, vol. 5, p. 101177. doi 10.1039/c5ra18294hCrossRefGoogle Scholar
  16. 16.
    Shi, B., Jie, K., Zhou, Yu., Zhou, J., Xia, D., and Huang, F., J. Am. Chem. Soc., 2016, vol. 138, p. 80. doi 10.1021/jacs.5b11676CrossRefGoogle Scholar
  17. 17.
    Yakimova, L.S., Shurpik, D.N., Gilmanova, L.H., Makhmutova, A.R., Rakhimbekova, A., and Stoikov, I.I., Org. Biomol. Chem., 2016, vol. 14, p. 4233. doi 10.1039/c6ob00539jCrossRefGoogle Scholar
  18. 18.
    Jie, K., Zhou, Y., Yaoa, Y., and Huang, F., Chem. Soc. Rev., 2015, vol. 44, p. 3568. doi 10.1039/C4CS00390JCrossRefGoogle Scholar
  19. 19.
    Hillyer, M.B., Gibb, C.L.D., Sokkalingam, P., Jordan, J.H., Ioup, S.E., and Gibb, B.C., Org. Lett., 2016, vol. 18, p. 4048. doi 10.1021/acs.orglett.6b01903CrossRefGoogle Scholar
  20. 20.
    Andreyko, E.A., Padnya, P.L., Daminova, R.R., and Stoikov, I.I., RSC Adv., 2014, vol. 4, p. 3556. doi 10.1039/C3RA44052DCrossRefGoogle Scholar
  21. 21.
    Andreyko, E.A., Padnya, P.L., and Stoikov, I.I., Colloids Surf. A, 2014, vol. 454, p. 74. doi 10.1016/j.colsurfa.2014.04.021CrossRefGoogle Scholar
  22. 22.
    Padnya, P.L., Andreyko, E.A., Mostovaya, O.A., Rizvanov, I.Kh., and Stoikov, I.I., Org. Biomol. Chem., 2015, vol. 13, p. 5894. doi 10.1039/c5ob00548eCrossRefGoogle Scholar
  23. 23.
    Andreyko, E.A., Padnya, P.L., and Stoikov, I.I., J. Phys. Org. Chem., 2015, vol. 28, p. 527. doi 10.1002/poc.3433CrossRefGoogle Scholar
  24. 24.
    Shchukin, D. and Sukhorukov, G., Adv. Mater., 2004, vol. 16, p. 671. doi10.1002/adma.200306466CrossRefGoogle Scholar
  25. 25.
    Bag, D.S., Shami, T.C., and Rao, K.U., Defence Sci. J., 2008, vol. 58, p. 626. doi 10.14429/dsj.58.1685CrossRefGoogle Scholar
  26. 26.
    Cheetham, A.G., Zhang, P., Lin, Y., Lock, L.L., and Cui, H., J. Am. Chem. Soc., 2013, vol. 135, p. 2907. doi 10.1021/ja3115983CrossRefGoogle Scholar
  27. 27.
    Padnya, P.L., Khripunova, I.A., Mostovaya, O.A., Mukhametzyanov, T.A., Evtugyn, V.G., Vorobev, V.V., Osin, Yu.N., and Stoikov, I.I., Beilstein J. Nanotech., 2017, vol. 8, p. 1825. doi 10.3762/bjnano.8.184CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. L. Padnya
    • 1
  • O. S. Potrekeeva
    • 1
  • E. E. Bayarashov
    • 1
  • I. I. Stoikov
    • 1
  1. 1.Butlerov Chemical InstituteKazan (Volga Region) Federal UniversityKazan, TatarstanRussia

Personalised recommendations