Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 11, pp 2321–2327 | Cite as

Synthesis of Mono- and Tetraalkylamide Derivatives of p-tert-Butylthiacalix[4]arene

  • R. V. Nosov
  • I. I. StoikovEmail author
Article
  • 11 Downloads

Abstract

Mono- and tetrasubstituted derivatives of p-tert-butylthiacalix[4]arene containing acrylate and acrylamide fragments are synthesized for the first time. The Michael aza-addition of benzylamine to the synthesized acrylamide and acrylate thiacalixarene derivatives is studied.

Keywords

thiacalix[4]arene amino derivatives acrylamides acrylates Michael reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gokel, G.W., Leevy, W.M., and Weber, M.E., Chem. Rev., 2004, vol. 104, no. 5, p. 2723. doi 10.1021/cr020080kCrossRefGoogle Scholar
  2. 2.
    Barrow, S.J., Kasera, S., Rowland, M.J., del Barrio, J., and Scherman, O.A., Chem. Rev., 2015, vol. 115, no. 22, p. 12320. doi 10.1021/acs.chemrev.5b00341CrossRefGoogle Scholar
  3. 3.
    Del Valle, M.E.M., Process Biochem., 2004, vol. 39, p. 1033. doi 10.1016/S0032-9592(03)00258-9CrossRefGoogle Scholar
  4. 4.
    Ogoshi, T., Yamagishi, T.A., and Nakamoto, Y., Chem. Rev., 2016, vol. 116, no. 14, p. 7937. doi 10.1021/acs.chemrev.5b00765CrossRefGoogle Scholar
  5. 5.
    Schneider, H.J. and Schneider, U., J. Incl. Phenom. Mol. Recogn. Chem., 1994, vol. 19, p. 67. doi 10.1007/BF00708975CrossRefGoogle Scholar
  6. 6.
    Kim, H.J., Lee, M.H., Mutihac, L., Vicens, J., and Kim, J.S., Chem. Soc. Rev., 2012, vol. 41, no. 3, p. 1173. doi 10.1039/C1CS15169JCrossRefGoogle Scholar
  7. 7.
    Ogoshi, T. and Yamagishi, T.A., Eur. J. Org. Chem., 2013, vol. 2013, no. 15, p. 2961. doi 10.1002/ejoc.201300079CrossRefGoogle Scholar
  8. 8.
    Dai, S., Ju, Y.H., and Barnes, C.E., J. Chem. Soc. Dalton Trans., 1999, vol. 1, no. 8, p. 1201. doi 10.1039/A809672DCrossRefGoogle Scholar
  9. 9.
    Kim, J.S. and Quang, D.T., Chem. Rev., 2007, vol. 107, no. 9, p. 3780. doi 10.1021/cr068046jCrossRefGoogle Scholar
  10. 10.
    Assaf, K.I. and Nau, W.M., Chem. Soc. Rev., 2015, vol. 44, no. 2, p. 394. doi 10.1039/C4CS00273CCrossRefGoogle Scholar
  11. 11.
    Coleman, A.W., Perret, F., Moussa, A., Dupin, M., Guo, Y., and Perron, H., Top. Curr. Chem., 2007, vol. 277, p.31.CrossRefGoogle Scholar
  12. 12.
    Yang, S., Liu, L., You, M., Zhang, F., Liao, X., and He, P., Sensors Actuators B, 2016, vol. 227, p. 497. doi 10.1016/j.snb.2015.12.090CrossRefGoogle Scholar
  13. 13.
    Lee, C.C., Maestre-Reyna, M., Hsu, K.C., Wang, H.C., Liu, C.I., Jeng, W.Y., Lin, L.L., Wood, R., Chou, C.C., Yang, J.M., and Wang, A.H., Angew. Chem. Int. Ed., 2014, vol. 53, no. 48, p. 13054. doi 10.1002/anie.201405664CrossRefGoogle Scholar
  14. 14.
    Mecca, T. and Cunsolo, F., Polym. Adv. Technol., 2010, vol. 10, p. 752. doi 10.1002/pat.1493Google Scholar
  15. 15.
    Xia, B., Zheng, B., Han, C., Dong, S., Zhang, M., Hu, B., Yu, Y., and Huang, F., Polym. Chem., 2013, vol. 4, no. 6, p. 2019. doi 10.1039/C3PY21110JCrossRefGoogle Scholar
  16. 16.
    Guan, Y., Zhao, H.B., Yu, L.X., Chen, S.C., and Wang, Y.Z., RSC Adv., 2014, vol. 4, no. 10, p. 4955. doi 10.1039/C3RA45461DCrossRefGoogle Scholar
  17. 17.
    Homden, D.M. and Redshaw, C., Chem. Rev., 2008, vol. 108, no. 12, p. 5086. doi 10.1021/cr8002196CrossRefGoogle Scholar
  18. 18.
    Durst, H.D., Tetrahedron Lett., 1974, vol. 15, no. 28, p. 2421. doi 10.1016/S0040-4039(01)92274-9CrossRefGoogle Scholar
  19. 19.
    Pemberton, B.C., Raghunathan, R., Volla S., and Sivaguru, J., Chem. Eur. J., 2012, vol. 18, no. 39, p. 12178. doi 10.1002/chem.201202083CrossRefGoogle Scholar
  20. 20.
    Iki, N., Morohashi, N., Narumi, F., Fujimoto, T., Suzuki, T., and Miyano, S., Tetrahedron Lett. 1999, vol. 40, no. 41, p. 7337. doi 10.1016/S0040-4039(99)01503-8CrossRefGoogle Scholar
  21. 21.
    Nosov, R.V. and Stoikov, I.I., Macroheterocycles, 2015, vol. 8, no. 2, p. 120. doi 10.6060/mhc140929sCrossRefGoogle Scholar
  22. 22.
    Vavilova, A.A., Nosov, R.V., Mostovaya, O.A., and Stoikov, I.I., Macroheterocycles, 2016, vol. 9, no. 3, p. 294. doi 10.6060/mhc160531sCrossRefGoogle Scholar
  23. 23.
    Nosov, R.V., Yakimova, L.S., and Stoikov, I.I., Russ. J. Gen. Chem., 2017, vol. 87, no. 9, p. 1952. doi 10.1134/S1070363217090109CrossRefGoogle Scholar
  24. 24.
    Morohashi, N., Narumi, F., Iki, N., Hattori, T., and Miyano, S., Chem. Rev., 2006, vol. 106, no. 12, p. 5291. doi 10.1021/cr050565jCrossRefGoogle Scholar
  25. 25.
    Lhotak, P., Eur. J. Org. Chem., 2004, no. 8, p. 1675. doi 10.1002/ejoc.200300492CrossRefGoogle Scholar
  26. 26.
    Burilov, V., Valiyakhmetova, A., Mironova, D., Safiullin, R., Kadirov, M., Ivshin, K., Kataeva, O., Solovieva, S., and Antipin, I., RSC Adv., 2016, vol. 6, no. 50, p. 44873. doi 10.1039/C6RA07555JCrossRefGoogle Scholar
  27. 27.
    Etxebarria, J., Vicario, J.L., Badia, D., and Carrillo, L., J. Org. Chem., 2004, vol. 69, no. 7, p. 2588. doi 10.1021/jo0357768CrossRefGoogle Scholar
  28. 28.
    Stoikov, I.I., Galukhin, A.V., Zaikov, E.N., and Antipin, I.S., Mendeleev Commun., 2009, vol. 19, no. 4, p. 193. doi 10.1016/j.mencom.2009.07.006CrossRefGoogle Scholar
  29. 29.
    Zhukov, A.Y., Fink, T.A., Stoikov, I.I., and Antipin, I.S., Russ. Chem. Bull., 2009, vol. 58, no. 5, p. 1007. doi 10.1007/s11172-009-0129-9CrossRefGoogle Scholar
  30. 30.
    Galukhin, A.V., Zaikov, E.N., Antipin, I.S., Konovalov, A.I., and Stoikov, I.I., Macroheterocycles, 2012, vol. 5, p. 266. doi 10.6060/mhc2012.120781sCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Butlerov Chemical InstituteKazan (Volga Region) Federal UniversityKazan, TatarstanRussia

Personalised recommendations