Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 11, pp 2276–2289 | Cite as

Synthesis of Phosphorylated Indoles

  • A. V. EgorovaEmail author
  • N. I. Svintsitskaya
  • A. V. Dogadina
Article
  • 12 Downloads

Abstract

Phosphorylated indoles are widely used not only in pharmaceutical chemistry, but also in the field of fine organic synthesis and materials science. In this regard, the synthesis of such compounds attracts great attention of researchers. This review presents advances in this area over the past 20 years. Particular attention is paid to the catalytic routes of synthesis corresponding to the current trends in organic chemistry.

Keywords

indoles phosphorylated indoles CH-phosphorylation cross-coupling reactions intramolecular cyclization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bialy, L. and Waldmann, H., Angew. Chem. Int. Ed., 2005, vol. 44, p. 3814. doi 10.1002/anie.200461517CrossRefGoogle Scholar
  2. 2.
    Jeon, S.O. and Lee, J.Y., J. Mater. Chem., 2012, vol. 22, p. 7239. doi 10.1039/C2JM30742ACrossRefGoogle Scholar
  3. 3.
    Montchamp, J.-L., Acc. Chem. Res., 2014, vol. 47, p. 77. doi 10.1021/ar400071vCrossRefGoogle Scholar
  4. 4.
    Perez, H.F., Pablo, E., Armen, P., and Anton, V.F., Chem. Rev., 2011, vol. 111, p. 2119. doi 10.1021/cr100244eCrossRefGoogle Scholar
  5. 5.
    Zhu, S.-F. and Zhou, Q.-L., Acc. Chem. Res., 2017, vol. 50, p. 988. doi 10.1021/acs.accounts.7b00007CrossRefGoogle Scholar
  6. 6.
    Jeught, S.V. and Stevens, C.V., Chem. Rev., 2009, vol. 109, p. 2672. doi 10.1021/cr800315jCrossRefGoogle Scholar
  7. 7.
    Demmer, C.S., Larsen, N.K, and Bunch, L., Chem. Rev., 2011, vol. 111, p. 7981. doi 10.1021/cr2002646CrossRefGoogle Scholar
  8. 8.
    Montel, S., Midrier, C., Volle, J.-N., Braun, R., Haaf, K., Willms, L., Pirat, J.-L., and Virieux, D., Eur. J. Org. Chem., 2012, p. 3237. doi 10.1002/ejoc.201200210Google Scholar
  9. 9.
    Gong, P., Ye, K.-Q., Sun, J.-B., Chen, P., Xue, P.-C., Yang, H., and Lu, R., RSC Adv., 2015, vol. 5, p. 94990. doi 10.1039/C8OB02100GCrossRefGoogle Scholar
  10. 10.
    Xiong, W.N., Yang, C.G., and Jiang, B., Bioorg. Med. Chem., 2001, vol. 9, no. 7, p. 1773. doi 10.1016/S0968-0896(01)00070-0CrossRefGoogle Scholar
  11. 11.
    Jackson, E.R. and Dowd, C.S., Curr. Top. Med. Chem., 2012, vol. 12, p. 706. doi 10.2174/156802612799984599CrossRefGoogle Scholar
  12. 12.
    Wu, D., Niu, J.-Q., Ding, Y.-H., Wu, X.-Y., Zhong, B.-H., and Feng, X.-W., Med. Chem. Res., 2012, vol. 21, p. 1179. doi 10.1007/s00044-011-9616-2CrossRefGoogle Scholar
  13. 13.
    Zhou, X.J., Garner, R.C., Nicholson, S., Kissling, C.J., and Mayers, D., J. Clin. Pharmacol., 2009, vol. 49, p. 1408. doi 10.1177/0091270009343698CrossRefGoogle Scholar
  14. 14.
    Fu, W.C., So, C.M., Chow, W.K., Yuen, O.Y., and Kwong, F.Y., Org. Lett., 2015, vol. 17, p. 4612. doi 10.1021/acs.orglett.5b02344CrossRefGoogle Scholar
  15. 15.
    Rataboul, F., Zapf, A., Jackstell, R., Harkal, S., Riermeier, T., Monsees, A., Dingerdissen, U., and Beller, M., Chem. Eur. J., 2014, vol. 10, p. 2983. doi 10.1002/chem.200306026CrossRefGoogle Scholar
  16. 16.
    Surry, D.S. and Buchwald, S.L., Angew. Chem. Int. Ed., 2008, vol. 47, p. 6338. doi 10.1002/anie.200800497CrossRefGoogle Scholar
  17. 17.
    Gong, P., Ye, K.-Q., Sun, J.-B., Chen, P., Xue, P.-C., Yang, H., and Lu, R., RSC Adv., 2015, vol. 5, p. 94990. doi 10.1039/C5RA19867DCrossRefGoogle Scholar
  18. 18.
    Gurevich, P.A. and Yaroshevskaya, V.A., Chem. Heterocycl. Compd., 2000, vol. 36, no. 12, p. 1361. doi 10.1023/A:101756211CrossRefGoogle Scholar
  19. 19.
    Redmore, D., Chem. Rev., 1971, no. 3, vol. 71, p. 315. doi 10.1021/cr60271a003CrossRefGoogle Scholar
  20. 20.
    Razumov, A.I., Gurevich, P.A., and Baigil'dina, S.Yu., Chem. Heterocycl. Compd., 1976, vol. 12, no. 7, p. 723. doi 10.1007/BF00476997CrossRefGoogle Scholar
  21. 21.
    Hughes, D.L.J., Org. Prep. Proced. Int., 1993, vol. 25, no. 6, p. 607. doi 10.1080/00304949309356257CrossRefGoogle Scholar
  22. 22.
    Wang, H., Li, X., Wu, F., and Wan, B., Synthesis, 2012, vol. 44, p. 941. doi 10.1055/s-0031-1289700CrossRefGoogle Scholar
  23. 23.
    Zhao, Z., Min, Z., Dong, W., Peng, Z., and An, D., Synth. Commun., 2016, vol. 46, no. 2, p. 128. doi 10.1080/00397911.2015.1122807CrossRefGoogle Scholar
  24. 24.
    Sun, W.B., Xue, J.F., Zhang, G.Y., Zeng, R.S, An, L.T., Zhang, P.Z., and Zou, J.P., Adv. Synth. Catal., 2016, vol. 358, p. 1753. doi 10.1002/adsc.201600001CrossRefGoogle Scholar
  25. 25.
    Su, F.R., Su, F., Lin, W., Zhu, P., He, D., Lin, J., Zhang, H.-J., and Wen, T.-B., Adv. Synth. Catal., 2017, vol. 359, p. 947. doi 10.1002/adsc.201601204CrossRefGoogle Scholar
  26. 26.
    Yadav, M., Dara, S., Saikam, V., Kumar, M., Aithagani, S.K., Paul, S., Vishwakarma, R.A., and Singh, P.P., Eur. J. Org. Chem., 2015, N 29, p. 6526. doi 10.1002/ejoc.201500984Google Scholar
  27. 27.
    Shaikh, R.S., Ghosh, I., and König, B., Chem. Eur. J., 2017, vol. 23, p. 12120. doi 10.1002/chem.201701283CrossRefGoogle Scholar
  28. 28.
    Yurko, E.O., Gryaznova, T.V., Khrizanforova, V.V., Khrizanforov, M.N., Toropchina, A.V., Budnikova, Yu.H., and Sinyashin, O.G., Russ. Chem. Bull., 2018, vol. 67, no. 1, p. 102. doi 10.1007/s11172-018-2043-5CrossRefGoogle Scholar
  29. 29.
    Yurko, E.O., Gryaznova, T.V., Kholin, K.V., Khrizanforova, V.V., and Budnikova, Y.H., Dalton Trans., 2018, vol. 47, p. 190. doi 10.1039/C7DT03650GCrossRefGoogle Scholar
  30. 30.
    Hu, C., Hong, G, He, Y., Zhou, C., Kozlowski, M. C., and Wang, L., J. Org. Chem., 2018, vol. 83, p. 4739. doi 10.1021/acs.joc.8b00541CrossRefGoogle Scholar
  31. 31.
    Chen, L., Zou, Y.-X., Fang, X.-Y., Wu, J., and Sun, X.-H., Org. Biomol. Chem., 2018. doi 10.1039/C8OB02033GGoogle Scholar
  32. 32.
    Yuan, T., Huang, S., Cai, C., and Lu, G.-P., Org. Biomol. Chem., 2018, vol. 16, p. 30. doi 10.1039/C7OB02620JCrossRefGoogle Scholar
  33. 33.
    Benincori, T., Piccolo, O., and Rizzo, S., J. Org. Chem., 2000, vol. 65, no. 24, p. 8340. doi 10.1021/jo001207dCrossRefGoogle Scholar
  34. 34.
    Zhou, A.-X., Mao, L.-L., Wang, G.-W., and Yang, S.-D., Chem. Commun., 2014, vol. 50, no. 64, p. 8529. doi 10.1039/C4CC01815JCrossRefGoogle Scholar
  35. 35.
    Min, M., Kang, D., Jung, S., and Hong, S., Adv. Synth. Catal., 2016, vol. 358, p. 1296. doi 10.1002/adsc.201600014CrossRefGoogle Scholar
  36. 36.
    Chaikovskaya, A.A., Dmytriv, Y.V., Shevchuk, N.V., Smaliy, R.V., Pinchuk, A.M., and Tolmachev, A.A., Heteroatom Chem., 2009, vol. 20, no. 4, p. 235. doi 10.1002/hc.20540CrossRefGoogle Scholar
  37. 37.
    Benincori, T., Marchesi, A., Pilati, T., Ponti, A., Rizzo, S., and Sannicolò, F., Eur. J. Chem., 2009, vol. 15, no. 1, p. 94. doi 10.1002/chem.200801505CrossRefGoogle Scholar
  38. 38.
    Zhao, Y.-L., Wu, G.-J., Li, Y., Gao, L.-X., and Han, F.-S., Chem. Eur. J., 2012, vol. 18, p. 9622. doi 10.1002/chem.201103723CrossRefGoogle Scholar
  39. 39.
    Rasheed, S., Rao, D.S., Subramanyam, C., Basha, S.T., and Raju, C.N., Synth. Commun., 2014, vol. 44, p. 2988. doi 10.1080/00397911.2014.920030CrossRefGoogle Scholar
  40. 40.
    Zhang, H.-Y., Sun, M., Ma, Y.-N., Tian, Q.-P., and Yang, S.-D., Org. Biomol. Chem., 2012, vol. 10, p. 9627. doi 10.1039/C2OB26874DCrossRefGoogle Scholar
  41. 41.
    Alexandre, F.R., Amador, A., Bot, S., Caillet, C., Convard, T., Jakubik, J., Musiu, C., Poddesu, B., Vargiu, L., Liuzzi, M., Roland, A., Seifer, M., Standring, D., Storer, R., and Dousson, C.B., J. Med. Chem., 2011, vol. 54, no. 1, p. 392. doi 10.1021/jm101142kCrossRefGoogle Scholar
  42. 42.
    Dousson, C., Alexandre, F.R., Amador, A., Bonaric, S., Bot, S., Caillet, C., Convard, T., Costa, D., Lioure, M., Roland, A., Rosinovsky, E., Maldonado, S., Parsy, C., Trochet, C., Storer, R., Stewart, A., Wang, J., Mayes, B.A., Musiu, C., Poddesu, B., Vargiu, L., Liuzzi, M., Moussa, A., Jakubik, J., Hubbard, L., Seifer, M., and Standring, D., J. Med. Chem., 2016, vol. 59, no. 5, p. 1891. doi 10.1021/acs.jmedchem.5b01430CrossRefGoogle Scholar
  43. 43.
    Zhang, J.-S., Chen, T., Yang, J., and Han, L.-B., Chem. Commun., 2015, vol. 51, p. 7540. doi 10.1039/C5CC01182ECrossRefGoogle Scholar
  44. 44.
    Yoshida, S. and Hosoya, T., Chem. Lett., 2013, vol. 42, p. 583. doi 10.1246/cl.130116CrossRefGoogle Scholar
  45. 45.
    Krawczyk, H. and Sliwinski, M., Synthesis, 2002, no. 10, p. 1351. doi 10.1055/s-2002-33105CrossRefGoogle Scholar
  46. 46.
    Thielges, S., Meddah, E., Bisseret, P., and Eustache, J., Tetrahedron Lett., 2004, vol. 45, no. 5, p. 907. doi 10.1016/j.tetlet.2003.11.118CrossRefGoogle Scholar
  47. 47.
    Abdou, W.M., Kamel, A.A., and Khidre, M.D., Heteroatom Chem., 2004, vol. 15, no. 1, p. 77. doi 10.1002/hc.10216CrossRefGoogle Scholar
  48. 48.
    Wang, B.-C., Wang, Y.-N., Zhang, M.-M., Xiao, W.-J., and Lu, L.-Q., Chem. Commun., 2018, vol. 54. doi 3154 10.1039/C8CC00739JGoogle Scholar
  49. 49.
    Song, X.-R., Li, R., Yang, T., Bai, J., Yang, R., Chen, X., Ding, H., Xiao, Q., and Liang, Y.-M., Tetrahedron Lett., 2018, vol. 59, p. 3763. doi 10.1016/j.tetlet.2018.09.006CrossRefGoogle Scholar
  50. 50.
    Gao, Y., Lu, G., Zhang, P., Zhang, L., Tang, G., and Zhao, Y., Org. Lett., 2016, vol. 18, p. 1242. doi 10.1021/acs.orglett.6b00056CrossRefGoogle Scholar
  51. 51.
    Kondoh, A., Yorimitsu, H., and Oshima, K., Org. Lett., 2010, vol. 12, p. 1476. doi 10.1021/ol1001544CrossRefGoogle Scholar
  52. 52.
    Wang, H., Li, S., Wang, B., and Li, B., Org. Chem. Front., 2018, vol. 5, p. 88. doi 10.1039/C7QO00746ACrossRefGoogle Scholar
  53. 53.
    Egorova, A.V., Viktorov, N.B., Starova, G.L., Svintsitskaya, N.I., Garabadziu, A.V., and Dogadina, A.V., Tetrahedron Lett., 2017, vol. 58, p. 2997. doi 10.1016/j.tetlet.2017.06.062CrossRefGoogle Scholar
  54. 54.
    Asadov, A.Kh., Gurevich, P.A., Egorova, E.A., Burangulova, R.N., and Guseinov, F.N., Chem. Heterocycl. Compd., 2003, vol. 39, p. 1521. doi 10.1023/B:COHC.0000014418.16494.f8CrossRefGoogle Scholar
  55. 55.
    Wang, C.-H., Li, Y.-H., and Yang, S.-D., Org. Lett., 2018, vol. 20, p. 2382. doi 10.1021/acs.orglett.8b00722CrossRefGoogle Scholar
  56. 56.
    Luo, K., Yang, W.-C., and Wu, L., Asian J. Org. Chem., 2017, vol. 6, p. 350. doi 10.1002/ajoc.201600512CrossRefGoogle Scholar
  57. 57.
    Liao, L.-L., Gui, Y.-Y., Zhang, X.-B., Shen, G., Liu, H.-D., Zhou, W.-J., Li, J., and Yu, D.-G., Org. Lett., 2017, vol. 19, p. 3735. doi 10.1021/acs.orglett.7b01561CrossRefGoogle Scholar
  58. 58.
    Patel, P. and Borah, G., Eur. J. Org. Chem. 2017, no. 16, p. 2272. doi 10.1002/ejoc.201700095CrossRefGoogle Scholar
  59. 59.
    Lv, H., Shi, J., Wu, B., Guo, Y., Huang, J., and Yi, W., Org. Biomol. Chem., 2017, vol. 15, p. 8054. doi 10.1039/c7ob01977gCrossRefGoogle Scholar
  60. 60.
    Mishra, A. and Deb, I., Adv. Synth. Catal., 2016, vol. 358, p. 2267. doi 10.1002/adsc.201600321CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Egorova
    • 1
    Email author
  • N. I. Svintsitskaya
    • 2
  • A. V. Dogadina
    • 2
  1. 1.St. Petersburg Scientific Research Center for Ecological Safety of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia

Personalised recommendations