Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 6, pp 1205–1209 | Cite as

Synthesis of Gold Glyconanoparticles Based on the Condensation Products of D-Lactose and D-Maltose with SH-Containing Hydrazides

  • M. Yu. Vasileva
  • A. Yu. Ershov
  • V. A. Baygildin
  • B. M. Shabsel’s
  • I. V. Lagoda
  • A. V. Yakimansky
Article
  • 8 Downloads

Abstract

A procedure has been developed for the synthesis of gold glyconanoparticles with an average particle size of 16–24 nm and low polydispersity index on the basis of accessible D-maltose and D-maltose 2-sulfanylacetyl-, 3-sulfanylpropanoyl-, and 2-sulfanylbenzoylhydrazones.

Keywords

SH-containing acylhydrazones derived from D-maltose and D-lactose gold glyconanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaces, Dendrimers, Nanoparticles, and Hydrogels, Narain, R., Ed., Hoboken, NJ: Wiley, 2011. doi 10.1002/9780470944349.ch6Google Scholar
  2. 2.
    Nanomaterials: Toxicity and Risk Assessment, Soloneski, S. and Larramendy, M.L., Eds., Rijeka: IntechOpen, 2015. doi 10.57 72/60665Google Scholar
  3. 3.
    Carbohydrate Nanotechnology, Stine, K.J., Ed., Hoboken, NJ: Wiley, 2016. doi 10.1002/9781118860212. ch3Google Scholar
  4. 4.
    Bhattarai, J.K., Neupane, D., Mikhaylov, V., Demchenko, A.V., and Stine, K.J., Carbohydrates, Caliskan, M., Kavakli, I.H., and Oz, G.C., Eds., IntechOpen, 2017, p. 63. doi 10.5772/66194Google Scholar
  5. 5.
    Nanobiomaterials in Cancer Therapy (Applications of Nanobiomaterials, Vol. 7), Grumezescu, A.M., Ed., Amsterdam: Elsevier, 2016. doi 10.1016/B978-0-323-42863-7.00002-5Google Scholar
  6. 6.
    Huang, G., Cheng, F., Chen, X., Peng, D., Hu, X., and Liang, G., Curr. Pharm. Des., 2013, vol. 19, no. 13, p. 2454. doi 10.2174/13816 12811319130014CrossRefGoogle Scholar
  7. 7.
    Dykman, L.A. and Khlebtsov, N.G., Acta Naturae, 2011, vol. 3, no. 2 (9), p.36.Google Scholar
  8. 8.
    Jazayeri, M.H., Amani, H., Pourfatollah, A.A., Avan, A., Ferns, G.A., and Pazoki-Toroudi, H., Cancer Gene Ther., 2016, vol. 23, p. 365. doi 10.1038/cgt.2016.42CrossRefGoogle Scholar
  9. 9.
    Veerapandian, M., Lim, S.K., Nam, H.M., Kuppannan, G., and Yun, K.S., Anal. Bioanal. Chem., 2010, vol. 398, p. 867. doi 10.1007/s00216-010-3964-5CrossRefGoogle Scholar
  10. 10.
    Perfezou, M., Turner, A., and Merkoci, A., Chem. Soc. Rev., 2012, vol. 41, p. 2606. doi 10.1039/C1CS15134GCrossRefGoogle Scholar
  11. 11.
    Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M., Chem. Rev., 2005, vol. 105, p. 1103. doi 10.1021/cr0300789CrossRefGoogle Scholar
  12. 12.
    Pourceau, G., del Valle-Carrandi, L., Di Gianvincenzo, P., Michelena, O., and Penades, S., RSC Adv., 2014, vol. 4, p. 59284. doi 10. 1039/C4RA11741GCrossRefGoogle Scholar
  13. 13.
    Wang, S., Zhou, Y.-L., and Baker, D.C., Arkivoc, 2009, part (xiv), p.171.Google Scholar
  14. 14.
    Yang, H. and Cheng, Q., Analyst, 2017, vol. 142, p. 2654. doi 10.1039/C7AN00428ACrossRefGoogle Scholar
  15. 15.
    Zhang, J. and Misra, R.D.K., Acta Biomater., 2007, vol. 3, p. 838. doi 10.1016/j.actbio.2007.05.011CrossRefGoogle Scholar
  16. 16.
    Chuang, Y.-J., Zhou, X., Pan, Z., and Turchi, C., Biochem. Biophys. Res. Commun., 2009, vol. 389, p. 22. doi 10.1016/j.bbrc.2009. 08.079CrossRefGoogle Scholar
  17. 17.
    Zhi, Z., Powell, A., and Turnbull, J., Anal. Chem., 2006, vol. 78, no. 14, p. 4786. doi 10.1021/ac060084fCrossRefGoogle Scholar
  18. 18.
    Coxon, T.P., Fallows, T.W., Gough, J.E., and Webb, S.J., Org. Biomol. Chem., 2015, vol. 13, no. 43, p. 10 751. doi 10.1039/C5OB 01591JCrossRefGoogle Scholar
  19. 19.
    Gurav, D., Varghese, O.P., Hamad, O.A., Nilsson, B., Hilborn, J., and Oommen, O.P., Chem. Commun., 2016, vol. 52, p. 966. doi 10.1039/C5CC09215ACrossRefGoogle Scholar
  20. 20.
    Ershov, A.Yu., Vasileva, M.Yu., Lagoda, I.V., Baygildin, V.A., Nasledov, D.G., Kuleshova, L.Yu., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 1, p. 103. doi 10.1134/S1070363218010164CrossRefGoogle Scholar
  21. 21.
    Vasileva, M.Yu., Ershov, A.Yu., Baygildin, V.A., Lagoda, I.V., Kuleshova, L.Yu., Shtro, A.A., Zarubaev, V.V., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 1, p. 109. doi 10.1134/S1070363218010176CrossRefGoogle Scholar
  22. 22.
    Ershov, A.Yu., Vasileva, M.Yu., Lagoda, I.V., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 6, p. 1199. doi 10.1134/S1070363218060245Google Scholar
  23. 23.
    Turkevich, J., Gold Bull., 1985, vol. 18, p. 125. doi 10.1007/BF03214694CrossRefGoogle Scholar
  24. 24.
    Rullo, A., Beharry, A.A., Gómez-Biagi, R.F., Zhao, X., and Nitz, M., ChemBiochem, 2012, vol. 13, p. 783. doi 10.1002/cbic.2012 00046CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. Yu. Vasileva
    • 1
  • A. Yu. Ershov
    • 1
  • V. A. Baygildin
    • 1
  • B. M. Shabsel’s
    • 1
  • I. V. Lagoda
    • 2
  • A. V. Yakimansky
    • 1
    • 3
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Research and Trial Medical and Biological Protection Center, State Research and Trial Institute of Military MedicineMinistry of Defense of the Russian FederationSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations