Russian Journal of General Chemistry

, Volume 88, Issue 3, pp 613–615 | Cite as

Molecular Layering Synthesis of TiO2 Nanolayer with Developed Roughness on Silicon as a Promising Basis for Biosensors

Letters to the Editor
  • 5 Downloads

Abstract

Conditions for the synthesis of dispersion titanium dioxide with a developed roughness by molecular layering on the silicon surface were determined and structural characteristics of the resulting layer were studied. Electroactive surface area of the titanium dioxide nano-roughened films obtained by the proposed method is higher than those of the reference (smooth) titanium oxide film and the reference silicon electrode by factors 1.1 and 1.2, respectively.

Keywords

nanolayer nanoparticle titanium dioxide molecular layering method surface roughness electroactive surface area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zemtsova, E.G., Arbenin, A.Y., Valiev, R.Z., Orekhov, E.V., Semenov, V.G., and Smirnov, V.M., Materials, 2016, vol. 9, no. 12. Article ID 1010. doi 10.3390/ma9121010Google Scholar
  2. 2.
    Banica, F.G., Chemical Sensors and Biosensors: Fundamentals and Applications, Chichester: John Wiley, 2012, p. 541.CrossRefGoogle Scholar
  3. 3.
    Bai, J. and Zhou, B., Chem. Rev., 2014, vol. 114, p. 10136. doi 10.1021/cr400625jGoogle Scholar
  4. 4.
    Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., Chem. Vapor Deposition, 2015, vol. 21, p. 216. doi 10.1002/cvde. 201502013CrossRefGoogle Scholar
  5. 5.
    Zemtsova, E.G., Arbenin, A.Y., Plotnikov, A.F., and Smirnov, V.M., J. Vacuum Sci. Technol. (A), 2015, vol. 33, no. 2, Article no. 021519. doi 10.1116/1.4907989Google Scholar
  6. 6.
    Nazarov, D.V., Bobrysheva, N.P., Osmolovskaya, O.M., Osmolovsky, M.G., and Smirnov, V.M., Rev. Adv. Mater. Sci., 2015, vol. 40, p. 262.Google Scholar
  7. 7.
    Nazarov, D.V., Zemtsova, E.G., Valiev, R.Z., and Smirnov V.M., Materials, 2015, vol. 8, p. 8366. doi 10.3390/ma8125460CrossRefGoogle Scholar
  8. 8.
    Panov, M.S., Tumkin, I.I., and Mironov, V.S., Opt. Quant. Electron., 2016, vol. 48, p. 490. doi 10.1007/s11082-016-0758-9CrossRefGoogle Scholar
  9. 9.
    Fateev, S.A., Araslanova, S.M., and Mironov, V.S., Proc. SPIE, 2014, vol. 9543, p. 95432A-1. doi 10.1117/12.2182077Google Scholar
  10. 10.
    Caro-Jara, N., Mundaca-Uribe, R., Zaror-Zaror, C., Carpinelli-Pavisic, J., Aranda-Bustos, M., and Pena-Farfal, C., Electroanalysis, 2013, vol. 25, p. 308. doi 10.1002/elan.201200391CrossRefGoogle Scholar
  11. 11.
    Etienne, M., Zhang, L., Vil, N., and Walcarius, A., Electroanalysis, 2015, vol. 27, p. 2028. doi 10.1002/elan.201500172CrossRefGoogle Scholar
  12. 12.
    Smirnov, V.M., Zemtsova, E.G., and Morozov, P.E., Rev. Adv. Mater. Sci., 2009, vol. 21, p. 205.Google Scholar
  13. 13.
    Ermakova, L.E., Sidorova, M.P., and Smirnov, V.M., Colloid J., 1997, vol. 59, p. 563.Google Scholar
  14. 14.
    Smirnov, V.M., Russ. J. Gen. Chem., 2002, vol. 72, p. 590. doi 10.1023/A:1016396500708CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Mironov
    • 1
  • E. G. Zemtsova
    • 1
  • V. M. Smirnov
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations