Russian Journal of General Chemistry

, Volume 88, Issue 3, pp 470–473 | Cite as

Synthesis and Structure of Trichlorogermane Aminate

  • I. S. Ignat’ev
  • V. V. Avrorin
  • Т. А. Kochina
  • Yu. Е. Ermolenko
Article
  • 1 Downloads

Abstract

Trichlorogermane triethylaminate [HGeCl3·NEt3] has been synthesized and its structure investigated using the methods of NMR and IR spectroscopy and quantum chemistry. Possible structures of complexes of triethylamine with trichlorogermane are considered. The presence of two minima on the potential energy surface is shown; the global minimum corresponds to the structure with proton transfer to the nitrogen atom, [Et3NH]+[GeCl3], while the local minimum lying by 25.8 kcal/mol above is characterized by the presence of very weak van-der-Waals interaction N···Ge. The comparison of the experimental and calculated chemical shifts of the proton is indicative of the formation of complex with proton transfer to the nitrogen atom in the liquid phase.

Keywords

trichlorogermane triethylaminate synthesis nuclear-chemical method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kochina, T.A., Vrazhnov, D.V., Sinotova, E.N., and Voronkov, M.G., Russ. Chem. Rev., 2006, vol. 75, no. 2, p. 95. doi 10.1070/RC2006v075n02ABEH002480CrossRefGoogle Scholar
  2. 2.
    Mironov, V.F., Khromova, N.Yu., and Gar T.K., Zh. Strukt. Khim., 1980, vol. 51, p. 954.Google Scholar
  3. 3.
    Levason, W., Reid, G., and Zhang, W., Coord. Chem. Rev., 2011, vol. 255, p. 1319. doi 10.1016/j.ccr.2010.11.019CrossRefGoogle Scholar
  4. 4.
    Young, N.A., Coord. Chem. Rev., 2013, vol. 257, p. 956. doi 10.1016/j.ccr.2012.10.013CrossRefGoogle Scholar
  5. 5.
    Malik, M.A., Afzaal, M., and O’Brien, P., Chem. Rev., 2010, vol. 110, p. 4417. doi 10.1021/cr900406fCrossRefGoogle Scholar
  6. 6.
    Ruoff, R.S., Emilsson, T., Jaman, A.I., Germann, T.C., and Gutowsky, H.S., J. Chem. Phys., 1992, vol. 96, p. 3441.CrossRefGoogle Scholar
  7. 7.
    Marsden, C.J., Inorg. Chem., 1983, vol. 22, p. 3178. doi 10.1021/ic00164a001CrossRefGoogle Scholar
  8. 8.
    Chehayber, J.M., Nagy, S.T., and Lin, C.S., Can. J. Chem., 1984, vol. 62, p. 27. doi 10.1139/v84-006CrossRefGoogle Scholar
  9. 9.
    Gordon, M.S., Davis, L.P., and Burggraf, L.W., Chem. Phys. Lett., 1989, vol. 163, p. 371. doi 10.1016/00092614(89)85152-8CrossRefGoogle Scholar
  10. 10.
    Rossi, A.R. and Jasinski, J.M., Chem. Phys. Lett., 1990, vol. 169, p. 399. doi 10.1016/0009-2614(90)87066-ZCrossRefGoogle Scholar
  11. 11.
    Hu, J., Schaad, L.J., and Hess, B.A., J. Am. Chem. Soc., 1991, vol. 113, p. 1463. doi 10.1021/ya00004a085CrossRefGoogle Scholar
  12. 12.
    Alkorta, I., Rozas, I., and Elguero, J., J. Phys. Chem. (A), 2001, vol. 105, p. 743. doi 10.1021/jp002808bCrossRefGoogle Scholar
  13. 13.
    Timoshkin, A.Yu., Sevast’yanova, T.N., Davydova, E.I., Suvorov, A.V., and Schaefer, H.F., Russ. J. Gen. Chem., 2002, vol. 72, p. 1576. doi 10.1023/A:1023387601235CrossRefGoogle Scholar
  14. 14.
    Hoffmann, R., Howell, J.M., and Muetterties, E.L., J. Am. Chem. Soc., 1972, vol. 94, p. 3047. doi 10.1021/ya00764a028CrossRefGoogle Scholar
  15. 15.
    Hagen, A.P. and Callaway, B.W., J. Inorg. Nucl. Chem., 1972, vol. 34, p. 487. doi 10.1016/0022-1902(72)80426-3CrossRefGoogle Scholar
  16. 16.
    Timoshkin, A.Yu., Sevast’yanova, T.N., Davydova, E.I., Suvorov, A.V., and Schaefer, H.F., Russ. J. Gen. Chem., 2003, vol. 73, p. 765. doi 10.1023/A:1026143105189CrossRefGoogle Scholar
  17. 17.
    Davydova, E.I., Timoshkin, A.Yu., Sevast’yanova, T.N., Suvorov, A.V., and Frenking, G., J. Mol. Struct. (Theochem.), 2006, vol. 767, p. 103. doi 10.1016/j.theochem.2006.05.011CrossRefGoogle Scholar
  18. 18.
    Helminiak, H.M., Knauf, R.R., Danforth, S.J., and Phillips, J.A., J. Phys. Chem. (A), 2014, vol. 118, p. 4266. doi 10.1021/jp4115207CrossRefGoogle Scholar
  19. 19.
    McNair, A.M. and Ault, B.S., Inorg. Chem., 1982, vol. 21, p. 1762. doi 10.1021/ic00135a013CrossRefGoogle Scholar
  20. 20.
    Davydova, E.I., Sevast’yanova, T.N., Suvorov, A.V., and Frenking, G., Russ. J. Gen. Chem., 2006, vol. 76, p. 545. doi 10.1134/S1070363206040098CrossRefGoogle Scholar
  21. 21.
    Nogai, S., Schrievera, A., and Schmidbaur, H., Dalton Trans., 2003, p. 3165. doi 10.1039/B305792EGoogle Scholar
  22. 22.
    Mallikarjunaiah, K.J., Ramesh, K.P., and Damle, R., Phys. Stat. Sol. (B), 2007, vol. 244, p. 3809. doi 10.1002/pssb.200743104CrossRefGoogle Scholar
  23. 23.
    Tananaev, I.V., Dzhurinskii, B.F., and Mikhailov, Yu.N., Zh. Neorg. Khim., 1964, vol. 9, p. 1570.Google Scholar
  24. 24.
    Gar, T.K., Berliner, E.M., Kisin, A.V., and Mironov, V.F., Zh. Obshch. Khim., 1970, vol. 40, p. 2601.Google Scholar
  25. 25.
    Nametkin, N.S., Korolev, V.K., and Kuzmin, O.V., Dokl. Akad. Nauk SSSR, 1972, vol. 72, p. 1111.Google Scholar
  26. 26.
    Chai, J.D. and Head-Gordon, M., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 6615. doi 10.1039/b810189bCrossRefGoogle Scholar
  27. 27.
    Jing Kong, J., Gan, Z., Proynov, E., Freindorf, M., and Furlani, T.R., Phys. Rev. (A), 2009, vol. 79, p. 042510. doi 10.1103/PhysRevA.79.042510CrossRefGoogle Scholar
  28. 28.
    Hobza, P., Annu. Rep. Prog. Chem. (C), 2011, vol. 107, p. 148. doi 10.1039/c1pc90005fCrossRefGoogle Scholar
  29. 29.
    Thanthiriwatte, K.S., Hohenstein, E.G., Burns, L.A., and Sherrill, C.D., J. Chem. Theor. Comput., 2011, vol. 7, p. 88. doi 10.1021/ct100469bCrossRefGoogle Scholar
  30. 30.
    Zeng, Z.-Y., Wang, Y.-S., and Chao, S.D., Comp. Theor. Chem., 2017, vol. 1113, p. 1. doi 10.1016/j.comptc.2017.05.004CrossRefGoogle Scholar
  31. 31.
    Ristic, M.M., Petkovic, M., and Etinski, M., Comp. Theor. Chem., 2017, vol. 1114, p. 47. doi 10.1016/j.comptc.2017.05.029CrossRefGoogle Scholar
  32. 32.
    Woon, D.E. and Dunning, T.H., J. Chem. Phys., 1993, vol. 98, p. 1358. doi 10.1063/1.464303CrossRefGoogle Scholar
  33. 33.
    Dunning, T.H., J. Phys. Chem. (A), 2000, vol. 104, p. 9062. doi 10.1021/jp001507zCrossRefGoogle Scholar
  34. 34.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Rev., D.01. Wallingford CT: Gaussian, Inc., 2013.Google Scholar
  35. 35.
    Kalincsak, F. and Pongor, G., Spectr. Acta (A), 2002, vol. 58, p. 999. doi 10.1016/S1386-1425(01)00572-8CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. S. Ignat’ev
    • 1
  • V. V. Avrorin
    • 1
  • Т. А. Kochina
    • 2
  • Yu. Е. Ermolenko
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations