Advertisement

Solvothermal Synthesis of the Metal-Organic Framework MOF-5 in Autoclaves Prepared by 3D Printing

  • 24 Accesses

Abstract

The known metal-organic framework {Zn4O(BDC)3} (MOF-5 (I), where BDC is terephthalate anion) is synthesized by the solvothermal method in autoclaves prepared by 3D printing from polypropylene. The synthesized polymer is isolated in the individual state and characterized by elemental analysis and powder X-ray diffraction analysis. The crystal structures of MOF-5 and another coordination polymer based on zinc(II) terephthalate {Zn4O(BDC)3} · (ZnO)0.125 (SUMOF-2 (II)) obtained as a by-product of the solvothermal synthesis are confirmed by X-ray diffraction analysis (СIF files ССDС nos. 1920366 (I) and 1926136 (II)).

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Yaghi, O. and Li, H., J. Am. Chem. Soc., 1995, vol. 117, no. 41, p. 10401.

  2. 2

    Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., et al., Nature, 2003, vol. 423, no. 6941, p. 705.

  3. 3

    Peplow, M., Nature News, 2015, vol. 520, no. 7546, p. 148.

  4. 4

    Li, H., Eddaoudi, M., O’Keeffe, M., and Yaghi, O.M., Nature, 1999, vol. 402, no. 6759, p. 276.

  5. 5

    Wilmer, C.E., Leaf, M., Lee, C.Y., et al., Nature Chemistry, 2012, vol. 4, no. 2, p. 83.

  6. 6

    Herm, Z.R., Wiers, B.M., Mason, J.A., et al., Science, 2013, vol. 340, no. 6135, p. 960.

  7. 7

    Yoon, M., Suh, K., Natarajan, S., and Kim, K., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, no. 10, p. 2688.

  8. 8

    Lee, J., Farha, O.K., Roberts, J., et al., Chem. Soc. Rev., 2009, vol. 38, no. 5, p. 1450.

  9. 9

    Giménez-Marqués, M., Hidalgo, T., Serre, C., and Horcajada, P., Coord. Chem. Rev., 2016, vol. 307, p. 342.

  10. 10

    Inokuma, Y., Yoshioka, S., Ariyoshi, J., et al., Nature, 2013, vol. 495, no. 7442, p. 461.

  11. 11

    Stock, N. and Biswas, S., Chem. Rev., 2011, vol. 112, no. 2, pp. 933–969.

  12. 12

    Zhao, Y., Li, K., and Li, J., Z. Naturforsch., B: J. Chem. Sci., 2010, vol. 65, no. 8, p. 976.

  13. 13

    Chen, X.-M. and Tong, M.-L., Acc. Chem. Res., 2007, vol. 40, no. 2, p. 162.

  14. 14

    Gordeev, E., Degtyareva, E., and Ananikov, V., Izv. Akad. Nauk, Ser. Khim., 2016, no. 6, p. 1637.

  15. 15

    Kitson, P.J., Marshall, R.J., Long, D., et al., Angew. Chem., Int. Ed. Engl., 2014, vol. 53, no. 47, p. 12723.

  16. 16

    Zhang, C., Wijnen, B., and Pearce, J.M., J. Lab. Autom., 2016, vol. 21, no. 4, p. 517.

  17. 17

    Baden, T., Chagas, A.M., and Gage, G., PLoS Biol., 2015, vol. 13, no. 3. e1002086.

  18. 18

    Berman, B., Business Horizons, 2012, vol. 55, no. 2, p. 155.

  19. 19

    Kitson, P.J., Glatzel, S., Chen, W., et al., Nat. Protocols, 2016, vol. 11, no. 5, p. 920.

  20. 20

    Symes, M.D., Kitson, P.J., Yan, J., et al., Nat. Chem., 2012, vol. 4, no. 5, p. 349.

  21. 21

    Mulyati, T.A., Ediati, R., and Rosyidah, A., Indones. J. Chem., 2015, vol. 15, no. 2, p. 101.

  22. 22

    Spek, A., J. Appl. Crystallogr., 2003, vol. 36, no. 1, p. 7.

  23. 23

    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystalogr., 2008, vol. 64, no. 1, p. 112.

  24. 24

    Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., et al., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, no. 1, p. 59.

  25. 25

    Coelho, A., Bruker AXS GmbH, Karlsruhe, 2009.

  26. 26

    Top3DShop. https://top3dshop.ru/.

  27. 27

    OpenSCAD. http://www.openscad.org/documentation.html2009.

  28. 28

    Koc, B., Ma, Y., and Lee, Y.-S., Rapid Prototyping J., 2000, vol. 6, no. 3, p. 186.

  29. 29

    Smid, P., CNC Control Setup for Milling and Turning: Mastering CNC Control Systems, Industrial Press Inc., 2010.

  30. 30

    Simplify 3D. http://www.simplify3d.com/software/ documentation/.

  31. 31

    Magnum 3D. https://magnum3d.ru/magnum-creative-2-uni/.

  32. 32

    Yao, Q., Su, J., Cheung, O., et al., J. Mater. Chem., 2012, vol. 22, no. 20, p. 10345.

  33. 33

    Czaja, A.U., Trukhan, N., and Muller, U., Chem. Soc. Rev., 2009, vol. 38, no. 5, p. 1284.

  34. 34

    Seetharaj, R., Vandana, P., Arya, P., and Mathew, S., Arabian J. Chem., 2019, vol. 12, no. 3, p. 295.

Download references

ACKNOWLEDGMENTS

The structures of the synthesized compounds were studied using the equipment of the Center of Molecular Structure Investigation at the Nesmeyanov Institute of Organoelement Compounds (Russian Academy of Sciences) and supported by the Ministry of Science and Higher Education of the Russian Federation.

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-04020.

Author information

Correspondence to Yu. V. Nelyubina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Denisov, G.L., Primakov, P.V., Korlyukov, A.A. et al. Solvothermal Synthesis of the Metal-Organic Framework MOF-5 in Autoclaves Prepared by 3D Printing. Russ J Coord Chem 45, 836–842 (2019). https://doi.org/10.1134/S1070328419120030

Download citation

Keywords:

  • 3D printing
  • autoclave
  • metal-organic framework
  • X-ray diffraction analysis
  • solvothermal synthesis
  • zinc terephthalate