Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 11, pp 767–775 | Cite as

Intramolecular Nonvalent Interactions in the \({\text{Eu}}_{{\text{2}}}^{{{\text{II}}}}\)EuIII(μ-ORF)22-ORF)33-ORF)2(DME)2 Complex

  • R. V. Rumyantsev
  • G. K. FukinEmail author
Article
  • 13 Downloads

Abstract

A quantum chemical study of fluorinated europium alcoholate \({\text{Eu}}_{{\text{2}}}^{{{\text{II}}}}\)EuIII(μ-ORF)22-ORF)33-ORF)2(DME)2 (I), where DME is 1,2-dimethoxyethane, is performed. The structure of the complex contains numerous F⋅⋅⋅F, F⋅⋅⋅O, F⋅⋅⋅H, and C–F → Eu interactions. The nature and energy of these nonvalent interactions is studied in the framework of R. Bader’s quantum theory “Atoms in Molecules.” Nonvalent interactions between the negatively charged fluorine atoms in the structure of complex I can occur due to the donation of the electron density from the regions where the electron density is fairly highly concentrated to the regions of its relative depletion. Weaker C–F → Eu interactions are observed by the additional study using the Topos Pro structural topological program package. These interactions are confirmed by the study of the delocalization indices of electrons in the region of potential Eu⋅⋅⋅F interactions.

Keywords:

F⋅⋅⋅F interactions C–F → Eu interactions halogen bond quantum theory “Atoms in Molecules,” ToposPro delocalization indices 

Notes

FUNDING

This work was supported by the state task (theme no. 44.2, registration no. AAAA-A16-116122110053-1).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Bartashevich, E.V. and Tsirel’son, V.G., Usp. Khim., 2014, vol. 83, no. 12, p. 1181.CrossRefGoogle Scholar
  2. 2.
    Bartashevich, E.V., Yushina, I.D., Stash, A.I., and Tsirelson, V.G., Cryst. Growth Des., 2014, vol. 14, no. 11, p. 5674.CrossRefGoogle Scholar
  3. 3.
    Duarte, D.J.R., Peruchena, N.M., and Alkorta, I., J. Phys. Chem. A, 2015, vol. 119, no. 16, p. 3746.CrossRefGoogle Scholar
  4. 4.
    Rissanen, K., CrystEngComm, 2008, vol. 10, p. 1107.CrossRefGoogle Scholar
  5. 5.
    Gilday, L.C., Robinson, S.W., Barendt, T.A., et al., Chem. Rev., 2015, vol. 115, p. 7118.CrossRefGoogle Scholar
  6. 6.
    Priimagi, A., Cavallo, G., Metrangolo, P., and Resnati, G., Acc. Chem. Res., 2013, vol. 46, no. 11, p. 2686.CrossRefGoogle Scholar
  7. 7.
    Berger, G., Soubhye, J., and Meyer, F., Polym. Chem., 2015, vol. 6, p. 3559.CrossRefGoogle Scholar
  8. 8.
    Li, B., Zang, S.-Q., Wang, L.-Y., and Mak, Th.C.W., Coord. Chem. Rev., 2016, vol. 308, p. 1.CrossRefGoogle Scholar
  9. 9.
    Grushin, V.V., Herron, N., LeCloux, D.D., et al., Chem. Commun., 2001, p. 1494.Google Scholar
  10. 10.
    Mancino, G., Ferguson, A.J., Beeby, A., et al., J. Am. Chem. Soc., 2005, vol. 127, p. 524.CrossRefGoogle Scholar
  11. 11.
    Tiitta, M. and Niinistou, L., Chem. Vap. Deposition, 1997, vol. 3, no. 4, p. 167.CrossRefGoogle Scholar
  12. 12.
    Eisentraut, K.J. and Sievers, R.E., J. Inorg. Nucl. Chem., 1967, vol. 29, p. 1931.CrossRefGoogle Scholar
  13. 13.
    Krisyuk, V.V., Sysoev, S.V., Fedotova, N.E., et al., Thermochim. Acta, 1997, vol. 307, p. 107.CrossRefGoogle Scholar
  14. 14.
    Smart, B.E., J. Fluorine Chem., 2001, vol. 109, p. 3.CrossRefGoogle Scholar
  15. 15.
    Osuna, R.M., Hernandez, V., Navarrete, J.T.L., et al., Theor. Chem. Acc., 2011, vol. 128, p. 541.CrossRefGoogle Scholar
  16. 16.
    Hathwar, V.R. and Row, T.N.G., Cryst. Growth Des., 2011, vol. 11, p. 1338.CrossRefGoogle Scholar
  17. 17.
    Karnoukhova, V.A., Fedyanin, I.V., and Lyssenko, K.A., Struct. Chem., 2016, vol. 27, p. 17.CrossRefGoogle Scholar
  18. 18.
    Ramasubbu, N., Parthasarathy, R., and Murray-Rust, P., J. Am. Chem. Soc., 1986, vol. 108, p. 4308.CrossRefGoogle Scholar
  19. 19.
    Bunzli, J.-C.G. and Piguet, C., Chem. Soc. Rev., 2005, vol. 34, p. 1048.CrossRefGoogle Scholar
  20. 20.
    Shipley, C.P., Capecchi, S., Salata, O.V., et al., Adv. Mater., 1999, vol. 11, p. 533.CrossRefGoogle Scholar
  21. 21.
    Glover, P.B., Bassett, A.P., Nockemann, P., et al., Chem.-Eur. J., 2007, vol. 13, p. 6308.CrossRefGoogle Scholar
  22. 22.
    Evans, W.J., Forrestal, K.J., Ansari, M.A., and Ziller, J.W., J. Am. Chem. Soc., 1998, vol. 120, p. 2180.CrossRefGoogle Scholar
  23. 23.
    Liu, B., Roisnel, T., Maron, L., et al., Chem.-Eur. J., 2013, vol. 19, p. 3986.CrossRefGoogle Scholar
  24. 24.
    Maleev, A.A., Fagin, A.A., Ilichev, V.A., et al., J. Organomet. Chem., 2013, vol. 747, p. 126.CrossRefGoogle Scholar
  25. 25.
    Melman, J.H., Rohde, C., Emge, T.J., and d Brennan, J.G., Inorg. Chem., 2002, vol. 41, p. 28.CrossRefGoogle Scholar
  26. 26.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 09, Wallingford, 2009.Google Scholar
  27. 27.
    Dolg, M., Stoll, H., and Preuss, H., J. Chem. Phys., 1989, vol. 90, p. 1730.CrossRefGoogle Scholar
  28. 28.
    Keith, T.A., AIMAll. Version 17.11.14. TK Gristmill Software, Overland Park, 2017.Google Scholar
  29. 29.
    Lu, T. and Chen, F., J. Comput. Chem., 2012, vol. 33, p. 580.CrossRefGoogle Scholar
  30. 30.
    Shi, T. and Wang, P., J. Mol. Graphics Modell., 2016, vol. 70, p. 305.CrossRefGoogle Scholar
  31. 31.
    Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Cryst. Growth Des., 2014, vol. 14, p. 3576.CrossRefGoogle Scholar
  32. 32.
    Peresypkina, E.V. and Blatov, V.A., Acta Crystallogr., Sect. B: Struct. Sci., 2000, vol. 56, p. 1035.CrossRefGoogle Scholar
  33. 33.
    Kuzyaev, D.M., Rumyantsev, R.V., Fukin, G.K., and Bochkarev, M.N., Izv. Akad. Nauk. Ser. Khim., 2014, no. 4, p. 848.Google Scholar
  34. 34.
    Bader, R.F.W., Atoms in Molecules—A Quantum Theory, Oxford: Oxford Univ., 1990.Google Scholar
  35. 35.
    Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, p. 170.CrossRefGoogle Scholar
  36. 36.
    Rumyantsev, R.V. and Fukin G.K., Izv. Akad. Nauk. Ser. Khim., 2017, no. 9, p. 1557.Google Scholar
  37. 37.
    Batsanov, S.S., Neorg. Mater., 2001, vol. 37, no. 9, p. 1031.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Razuvaev Institute of Organometallic Chemistry, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations