Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 9, pp 637–643 | Cite as

Reactions of Acenaphthenediimine Aluminum Hydride with 1,3-Dicyclohexylcarbodiimide and 2,6-Di-tert-Butyl-4-Methylphenol

  • V. G. SokolovEmail author
  • T. S. Koptseva
  • M. V. Moskalev
  • E. V. Baranov
  • I. L. Fedyushkin
Article
  • 31 Downloads

Abstract

The reaction of [(Dpp-Bian)AlH(THF)] (I) (Dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imi-no]acenaphthene) with 1,3-dicyclohexylcarbodiimide (DCC) is accompanied by reduction of the carbodiimide C=N bond giving the complex [(Dpp-Bian)Al(DCC(H))] (II). In the reaction of hydride I with 2,6-di-tert-butyl-4-methylphenol, the Al–H bond is retained to give the amino-amine complex [(Dpp-BianH)Al(H)(OC6H2-2,6-tert-Bu2-4-Me)] (III). In compounds II and III, the diimine ligand is reduced to the dianion. New diamagnetic compounds II and III were characterized by IR and NMR spectroscopy, elemental analysis, and X-ray diffraction (CFA files CCDC nos. 1903665 (II) and 1903666 (III)).

Keywords:

aluminum hydrides redox active ligands diimine ligands synthesis molecular structure 

Notes

FUNDING

This work was performed within a state assignment and using research equipment of the Center for Collective Use “Analytical center of the Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences.”

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    Ziegler, K., Holzkamp, E., Breiland, H., et al., Angew. Chem., 1955, vol. 67, no. 19, p. 541.CrossRefGoogle Scholar
  2. 2.
    Natta, G.J., Polym. Sci., 1955, vol. 16, no. 82, p. 143.CrossRefGoogle Scholar
  3. 3.
    Jancik, V., Peng, Y., Roesky, H.W., et al., J. Am. Chem. Soc., 2003, vol. 125, no. 6, p. 1452.CrossRefPubMedGoogle Scholar
  4. 4.
    Yang, Z., Ma, X., Jancik, V., et al., Inorg. Chem., 2006, vol. 45, no. 8, p. 3312.CrossRefPubMedGoogle Scholar
  5. 5.
    Yang, Z., Ma, X., Oswald, R.B., et al., J. Am. Chem. Soc., 2006, vol. 128, no. 38, p. 12406.CrossRefPubMedGoogle Scholar
  6. 6.
    Cui, C., Roesky, H.W., Hao, H., et al., Angew. Chem. Int. Ed., 2000, vol. 39, no. 10, p. 1815.CrossRefGoogle Scholar
  7. 7.
    González-Gallardo, S., Jancik, V., Cea-Olivares, R., et al., Angew. Chem., 2007, vol. 46, no. 16, p. 2895.CrossRefGoogle Scholar
  8. 8.
    Jancik, V., Moya-Cabrera, M.M., Roesky, H.W., et al., Eur. J. Inorg. Chem., 2004, vol. 2004, no. 17, p. 3508.CrossRefGoogle Scholar
  9. 9.
    Peng, Y., Bai, G., Fan, H., et al., Inorg. Chem., 2004, vol. 43, no. 4, p. 1217.CrossRefPubMedGoogle Scholar
  10. 10.
    Yow, S., Gates, S.J., White, A.J.P., and Crimmin, M.R., Angew. Chem., 2012, vol. 51, no. 50, p. 12559.CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Li, J., Ma, X., et al., Coord. Chem. Rev., 2018, vol. 374, p. 387.CrossRefGoogle Scholar
  12. 12.
    Bourget-Merle, L., Lappert, M.F., and Severn, J.R., Chem. Rev., 2002, vol. 102, no. 9, p. 3031.CrossRefPubMedGoogle Scholar
  13. 13.
    Uhl, W. and Jana, B., Chem.-Eur. J., 2008, vol. 14, no. 10, p. 3067.CrossRefPubMedGoogle Scholar
  14. 14.
    Rascón-Cruz, F., Huerta-Lavorie, R., Jancik, V., et al., Dalton Trans., 2009, no. 7, p. 1195.Google Scholar
  15. 15.
    Uhl, W. and Jana, B., J. Organomet. Chem., 2009, vol. 694, nos. 7–8, p. 1101.CrossRefGoogle Scholar
  16. 16.
    Harder, S. and Spielmann, J., Chem. Commun., 2011, vol. 47, no. 43, p. 11945.CrossRefGoogle Scholar
  17. 17.
    Yang, Z., Zhong, M., Ma, X., et al., Angew. Chem., Int. Ed. Engl., 2015, vol. 54, no. 35, p. 10225.CrossRefGoogle Scholar
  18. 18.
    Hao, P., Yang, Z., Li, W., et al., Organometallics, 2015, vol. 34, no. 1, p. 105.CrossRefGoogle Scholar
  19. 19.
    Yang, Z., Hao, P., Liu, Z., et al., Organometallics, 2012, vol. 31, no. 17, p. 6500.CrossRefGoogle Scholar
  20. 20.
    Hao, P., Yang, Z., Ma, X., et al., Dalton Trans., 2012, no. 43, p. 13520.Google Scholar
  21. 21.
    Keyes, L.K., Todd, A.D., Giffin, N.A., et al., RSC Adv., 2017, no. 59, p. 37315.Google Scholar
  22. 22.
    Yang, Z., Hao, P., Liu, Z., et al., J. Organomet. Chem., 2014, vol. 751, p. 788.CrossRefGoogle Scholar
  23. 23.
    Hao, P., Yan, J., Yang, Z., et al., Chin. J. Inorg. Chem., 2014, no. 30, p. 2811.Google Scholar
  24. 24.
    Hao, P., Yang, Z., Ma, X., and Li, J., Chin. J. Inorg. Chem., 2013, no. 29, p. 1909.Google Scholar
  25. 25.
    Yang, Z., Hao, P., Liu, Z., et al., Z. Anorg. Allg. Chem., 2013, vol. 639, no. 14, p. 2618.CrossRefGoogle Scholar
  26. 26.
    Zhu, H., Yang, Z., Magull, J., et al., Organometallics, 2005, vol. 24, no. 26, p. 6420.CrossRefGoogle Scholar
  27. 27.
    Ma, X., Hao, P., Li, J., et al., Z. Anorg. Allg. Chem., 2013, vol. 639, nos. 3−4, p. 493.CrossRefGoogle Scholar
  28. 28.
    Kumar, S.S., Singh, S., Hongjun, F., et al., Organometallics, 2004, vol. 23, no. 26, p. 6327.CrossRefGoogle Scholar
  29. 29.
    Bartoli, G., Bartolacci, M., Cortese, M., et al., Eur. J. Org. Chem., 2004, vol. 2004, no. 11, p. 2359.CrossRefGoogle Scholar
  30. 30.
    Jegier, J.A. and Gladfelter, W.L., Coord. Chem. Rev., 2000, vols. 206–207, p. 631.CrossRefGoogle Scholar
  31. 31.
    Uhl, W., Coord. Chem. Rev., 2008, vol. 252, nos. 15–17, p. 1540.CrossRefGoogle Scholar
  32. 32.
    Uhl, W., Layh, M., Rhotert, I., et al., Z. Naturforsch. V, 2013, vol. 68, p. 503.CrossRefGoogle Scholar
  33. 33.
    Uhl, W., Hepp, A., Westenberg, H., et al., Organometallics, 2010, vol. 29, no. 6, p. 1406.CrossRefGoogle Scholar
  34. 34.
    Lin, C.Y., Tsai, C.F., Chen, H.J., et al., Chem. Eur. J., 2006, vol. 12, p. 3067.CrossRefPubMedGoogle Scholar
  35. 35.
    Chu, C., Yang, Y., and Zhu, H., Sci. China Chem., 2010, vol. 53, no. 9, p. 1970.CrossRefGoogle Scholar
  36. 36.
    Duchateau, R., Meetsma, A., and Teuben, J.H., Chem. Commun., 1996, no. 2, p. 223.Google Scholar
  37. 37.
    Chai, J., Jancik, V., Singh, S., et al., J. Am. Chem. Soc., 2005, vol. 127, no. 20, p. 7521.CrossRefPubMedGoogle Scholar
  38. 38.
    Myers, T.W. and Berben, L.A., J. Am. Chem. Soc., 2013, vol. 135, no. 27, p. 9988.CrossRefPubMedGoogle Scholar
  39. 39.
    Sherbow, T.J., Carr, C.R., Saisu, T., et al., Organometallics, 2016, vol. 35, no. 1, p. 9.CrossRefGoogle Scholar
  40. 40.
    Myers, T.W. and Berben, L.A., Organometallics, 2013, vol. 32, no. 22, p. 6647.CrossRefGoogle Scholar
  41. 41.
    Sokolov, V.G., Koptseva, T.S., Moskalev, M.V., et al., Russ. Chem. Bull. Int. Ed., 2017, vol. 66, no. 9, p. 1569.CrossRefGoogle Scholar
  42. 42.
    Sokolov, V.G., Koptseva, T.S., Dodonov, V.A., et al., Russ. Chem. Bull. Int. Ed., 2018, vol. 67, no. 12, p. 2164.CrossRefGoogle Scholar
  43. 43.
    Data Collection, Reduction and Correction Program, CrysAlisPro 1.171.38.46—Software Package, Rigaku OD, 2015.Google Scholar
  44. 44.
    SCALE3 ABSPACK: Empirical Absorption Correction, CrysAlisPro 1.171.38.46—Software Package, Rigaku OD, 2015.Google Scholar
  45. 45.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, p. 3.CrossRefGoogle Scholar
  46. 46.
    Sheldrick, G.M., SHELXTL. Version 6.14. Structure Determination Software Suite, Madison: Bruker AXS, 2003.Google Scholar
  47. 47.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.CrossRefGoogle Scholar
  48. 48.
    Moskalev, M.V., Lukoyanov, A.N., Baranov, E.V., and Fedushkin, I.L., Dalton Trans., 2016, vol. 45, no. 40, p. 15872.CrossRefPubMedGoogle Scholar
  49. 49.
    Lukoyanov, A.N., Fedushkin, I.L., Schumann, H., and Hummert, M., Z. Anorg. Allg. Chem., 2006, vol. 632, p. 1471.CrossRefGoogle Scholar
  50. 50.
    Healy, M.D., Mason, M.R., Gravelle, P.W., et al., Dalton Trans., 1993, no. 3, p. 441.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. G. Sokolov
    • 1
    Email author
  • T. S. Koptseva
    • 1
  • M. V. Moskalev
    • 1
  • E. V. Baranov
    • 1
  • I. L. Fedyushkin
    • 1
  1. 1.Razuvaev Institute of Organometallic Chemistry, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations