Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 9, pp 651–666 | Cite as

Structural Features of Monomeric Octahedral d2-Rhenium(V) Monooxo Complexes with Oxygen Atoms of Tridentate Chelating (O,N,S) Ligands

  • V. S. SergienkoEmail author
  • A. V. Churakov
Article

Abstract

The structural features of 31 mononuclear octahedral d2-Re(V) monooxo complexes with tridentate chelating (O,N,S) ligands, [ReO\(\left( {{\text{L}}_{{{\text{tri}}}}^{m}} \right)\)\(\left( {{\text{L}}_{{{\text{bi}}}}^{n}} \right)\)] and [ReO\(\left( {{\text{L}}_{{{\text{tri}}}}^{m}} \right)\)(Lmono)2] (Lmono = Cl, Br, OMe, OPPh3, PPh3) are considered. The Re–O\({{\left( {{\text{L}}_{{{\text{tri}}}}^{m}} \right)}_{{trans}}}{\kern 1pt} ,\) Re–O\({{\left( {{\text{L}}_{{{\text{bi}}}}^{n}} \right)}_{{trans}}}{\kern 1pt} ,\) and Re–O(OMe) bonds in 14 complexes were found to be commensurable in length with (or shorter than) analogous cis-bonds. This indicates the presence of pseudo-dioxo ReO2 groups in these structures with increased orders of both Re–O bonds located in trans-positions relative to each other. In the structures of 12 compounds, the Re–O(Ltri)trans, Re–O(Lbi)trans, and Re–O(OPPh3) bonds are markedly longer than analogous cis-bonds in accordance with the structural consequences of the trans-effect of a multiply bonded oxo ligand.

Keywords:

crystal structure X-ray diffraction analysis six-coordinate d2-Re monooxo compounds tridentate chelating (O,N,S) ligands 

Notes

REFERENCES

  1. 1.
    Porai-Koshits, M.A. and Gilinskaya, E.A. Kristallokhimiya, Moscow, VINITI, 1966, p. 126.Google Scholar
  2. 2.
    Porai-Koshits, M.A. and Atovmyan, L.O., Koord. Khim., 1975, vol. 1, p. 1271.Google Scholar
  3. 3.
    Griffith, F. and Wicing, C., J. Chem. Soc. A, 1968, no. 2, p. 379.Google Scholar
  4. 4.
    Porai-Koshits, M.A., Izv. Yugosl. Kristallogr. Tsentra, 1974, vol. 9, p. 19.Google Scholar
  5. 5.
    Porai-Koshits, M.A. and Atovmyan, L.O., Kristallokhimiya koordinatsionnykh soedinenii molibdena (Crystal Chemistry of Coordination Compounds of Molybdenum), Moscow: Nauka, 1974.Google Scholar
  6. 6.
    Shustorovich, E.M., Porai-Koshits, M.A., and Buslaev, Yu.A., Coord. Chem. Rev., 1975, vol. 17, no. 1, p. 1.CrossRefGoogle Scholar
  7. 7.
    Porai-Koshits, M.A. and Sergienko, V.S., Usp. Khim., 1990, vol. 59, no. 1, p. 86.CrossRefGoogle Scholar
  8. 8.
    Allen, F.H., Acta Crystallogr., Sect. B: Struct. Sci., 2002, vol. 58, no. 2, p. 380.CrossRefGoogle Scholar
  9. 9.
    Sergienko, V.S., Russ. J. Inorg. Chem., 2018, vol. 63, no. 14, p. 1764.  https://doi.org/10.1134/S0036023618140048 CrossRefGoogle Scholar
  10. 10.
    Sergienko, V.S. and Strashnova, S.B., Russ. J. Inorg. Chem., 2019, vol. 64, no. 7, p. 882. https://doi.org/10.1134/S0036023619070143Google Scholar
  11. 11.
    Sergienko, V.S., Russ. J. Coord. Chem., 2019, vol. 45, no. 6, p. 439. https://doi.org/10.1134/S1070328419060071Google Scholar
  12. 12.
    Sergienko, V.S. and Churakov A.V., Russ. J. Coord. Chem., 2019, vol. 45, no. 5, p. 276. https://doi.org/10.1134/S1070328419030072Google Scholar
  13. 13.
    Sergienko, V.S., Russ. J. Inorg. Chem., 2019, vol. 64, no. 4, p. 460.  https://doi.org/10.1134/S0036023618040174 CrossRefGoogle Scholar
  14. 14.
    Sergienko, V.S. and Churakov, A.V., Crystallogr. Rep., 2013, vol. 58, no. 1, p. 5.Google Scholar
  15. 15.
    Sergienko, V.S. and Churakov, A.V., Crystallogr. Rep., 2014, vol. 59, no. 3, p. 300.CrossRefGoogle Scholar
  16. 16.
    Chen, X., Femia, F.J., Babich, J.W., and Zubieta, J., Inorg. Chim. Acta, 2000, vol. 307, no. 2, p. 149.CrossRefGoogle Scholar
  17. 17.
    Meveles, F., Roucoux, A., Noiret, N., and Patin, H., Dalton Trans., 2001, no. 10, p. 3603.Google Scholar
  18. 18.
    Abram, U., Alberto, R., Dilworth, J.R., et al., Polyhedron, 1999, vol. 18, no. 8, p. 2995.CrossRefGoogle Scholar
  19. 19.
    Schroer, J. and Abram, U., Polyhedron, 2009, vol. 28, no. 6, p. 2277.CrossRefGoogle Scholar
  20. 20.
    Traar, P., Schröckender, A., Judmaier, M.E., et al., Eur. J. Inorg. Chem., 2010, no. 20, p. 5718.Google Scholar
  21. 21.
    Tessier, C., Rochon, F.D., and Beauchamp, A.L., Inorg. Chem., 2004, vol. 43, no. 23, p. 7463.CrossRefPubMedGoogle Scholar
  22. 22.
    Tshentu, Z.R., Gerber, T.L.A., and Mayer, P., Bull. Chem. Soc. Ethiop., 2007, vol. 21, no. 1, p. 75.CrossRefGoogle Scholar
  23. 23.
    Gerber, T.L.A., Mayer, P., and Tshentu, Z.R., J. C-oord. Chem., 2005, vol. 58, no. 17, p. 1589.Google Scholar
  24. 24.
    Gerber, T.L.A., Tshentu, Z.R., and Mayer, P., J. C-oord. Chem., 2003, vol. 56, no. 15, p. 1357.Google Scholar
  25. 25.
    Gerber, T.L.A., Luzipo, D., and Mayer, P., J. Coord. Chem., 2003, vol. 56, no. 17, p. 1549.CrossRefGoogle Scholar
  26. 26.
    Tessier, C., Rochon, F.D., and Beauchamp, A.L., Inorg. Chem., 2002, vol. 41, no. 21, p. 6527.CrossRefPubMedGoogle Scholar
  27. 27.
    Huy, N.H., Grewe, J., Schroer, J., et al., Inorg. Chem., 2008, vol. 47, no. 12, p. 5136.CrossRefGoogle Scholar
  28. 28.
    Nock, B., Maina, T., Tisato, F., et al., Inorg. Chem., 2000, vol. 39, no. 23, p. 5197.CrossRefPubMedGoogle Scholar
  29. 29.
    Femia, F.J., Chen, X., Babich, J.W., and Zubieta, J., Inorg. Chim. Acta, 2001, vol. 316, no. 2, p. 145.CrossRefGoogle Scholar
  30. 30.
    Nguen, H.H. and Abrum, U., Polyhedron, 2009, vol. 28, no. 10, p. 3945.CrossRefGoogle Scholar
  31. 31.
    Nguen, H.H., Deflon, V.M., and Abrum, U., Eur. J. Inorg. Chem., 2009, p. 3179.Google Scholar
  32. 32.
    Sawusch, S., Shilde, U., Starke, I., et al., Inorg. Chim. Acta, 1998, vol. 268, no. 2, p. 109.CrossRefGoogle Scholar
  33. 33.
    Gerber, T.I.A., Preetz, I.G.H., Jacobs, R., and van Brecht, B.J.A.M., J. Coord. Chem., 1994, vol. 31, no. 1, p. 31.CrossRefGoogle Scholar
  34. 34.
    Kirsch, S., Noll, B., Spies, H., et al., J. Chem. Soc., Dalton Trans., 1998, no. 4, p. 455.Google Scholar
  35. 35.
    Franklin, K.J., Howardp-Look, H.E., and Lock, C.J.L., Inorg. Chem., 1982, vol. 21, no. 4, p. 1941.CrossRefGoogle Scholar
  36. 36.
    Kirrsch, S., Jankowski, R., Leibnitz, P., et al., J. Biol. Inorg. Chem., 1999, vol. 4, no. 1, p. 48.CrossRefGoogle Scholar
  37. 37.
    Konno, T., Shimazaki, Y., Kawai, M., and Hirotsu, M., Inorg. Chem., 2001, vol. 40, no. 17, p. 4250.CrossRefPubMedGoogle Scholar
  38. 38.
    Mevelles, F., Rucoux, A., Noiret, H., and Patin, H., Inorg. Chim. Acta, 2002, vol. 332, no. 1, p. 30.CrossRefGoogle Scholar
  39. 39.
    Chiotellis, A., Tsoukalas, C., Pelecanou, M., et al., Inorg. Chem., 2006, vol. 45, no. 14, p. 5635.CrossRefPubMedGoogle Scholar
  40. 40.
    Papagiannopoulou, I., Pirmettis, I., Pelecanou, M., et al., Inorg. Chim. Acta, 2007, vol. 360, no. 11, p. 3597.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.All-Russian Institute for Scientific and Technical Information, Russian Academy of SciencesMoscowRussia

Personalised recommendations