Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 8, pp 585–591 | Cite as

The Nature of Conformational Polymorphism in the Crystals of Ph3Sb(O2CCH2–CH=CH2)2

  • G. K. FukinEmail author
  • E. V. Baranov
  • A. V. Cherkasov
  • R. V. Rumyantsev
Article
  • 6 Downloads

Abstract

Crystallization of the Ph3Sb(O2CCH2−CH=CH2)2 complex upon fast solvent (benzene) evaporation gives monoclinic crystals (I), whereas in the case of slow evaporation, triclinic crystals are formed (II). Also, monoclinic crystals are spontaneously transformed into triclinic crystals within 6 months. It was shown that the presence of voids near one carboxylate ligand in the monoclinic phase of Ph3Sb-(O2CCH2−CH=CH2)2 decreases the energy of intermolecular interactions and, as a consequence, leads to a conformational transition with a noticeable decrease in the crystal lattice energy. Thus, the presence of voids in the monoclinic phase crystal allows the formation of a thermodynamically more favorable conformation of the molecule in the crystal. Several structural models were determined for the Ph3Sb(O2CCH2−CH=CH2)2 complex (CIF files no. 1887561 (IIAM), model of non-interacting atoms; 1887562 (I), multipole model; 1887563 (IIIAM), model of non-interacting atoms; 1887564 (II), multipole model).

Keywords:

triphenylantimony complex with vinylacetic acid high-precision X-ray diffraction conformational polymorphs Bader’s theory of atoms in molecules 

Notes

ACKNOWLEDGMENTS

This work was performed using the scientific equipment of the Center for Collective use “Analytical Center of the Institute of Organometallic Chemistry, Russian Academy of Sciences.”

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 17-03-01257).

REFERENCES

  1. 1.
    Bajpai, K., Singhal, R., and Srivastava, R.C., Indian J. Chem., Sect. A: Inorg., Bio-Inorg., Phys., Theor. Anal. Chem., 1979, vol. 18, p. 73.Google Scholar
  2. 2.
    Singhal, K., Rastogi, R., and Raj, P., Indian J. Chem., Sect. A: Inorg., Bio-Inorg., Phys., Theor. Anal. Chem., 1987, vol. 26, p. 146.Google Scholar
  3. 3.
    Ma, Y., Li, J., Xuan, Z., and Liu, R., J. Organomet. Chem., 2001, vol. 620, nos. 1–2, p. 235.CrossRefGoogle Scholar
  4. 4.
    Liu, R.-C., Ma, Y.-Q., Yu, L., et al., Appl. Organomet. Chem., 2003, vol. 17, no. 9, p. 662.CrossRefGoogle Scholar
  5. 5.
    Yu, L., Ma, Y.-Q., Liu, R.-C., et al., Polyhedron, 2004, vol. 23, no. 5, p. 823.CrossRefGoogle Scholar
  6. 6.
    Yu, L., Ma, Y.-Q., Wang, G.-C., et al., Heteroat. Chem., 2004, vol. 15, no. 1, p. 32.CrossRefGoogle Scholar
  7. 7.
    Hadjikakou, S.K., Ozturk, I.I., Banti, C.N., et al., J. Inorg. Biochem., 2015, vol. 153, p. 293.CrossRefGoogle Scholar
  8. 8.
    Islam, A., Rodrigues, B.L., Marzano, I.M., et al., Eur. J. Med. Chem., 2016, vol. 109, p. 254.CrossRefGoogle Scholar
  9. 9.
    US Patent 3287210, 1966.Google Scholar
  10. 10.
    Organometallic Polymers, Carraher, C.E., Pittman, C.U., and Sheats, J.E., Eds., Elsevier, 1978.Google Scholar
  11. 11.
    Koton, M.M.: Metalloorganicheskie soedineniya i radikaly (Organometallic Compounds and Radicals), Moscow: Nauka, 1985.Google Scholar
  12. 12.
    Gushchin, A.V., Moiseev, D.V., and Dodonov, V.A., Russ. Chem. Bull., 2001, vol. 50, no. 7, p. 1291.CrossRefGoogle Scholar
  13. 13.
    Moiseev, D.V., Gushchin, A.V., Shavirin, A.S., et al., J. Organomet. Chem., 2003, vol. 667, nos. 1–2, p. 176.CrossRefGoogle Scholar
  14. 14.
    Qin, W., Yasuike, S., Kakusawa, N., et al., J. Organomet. Chem., 2008, vol. 693, no. 17, p. 2949.CrossRefGoogle Scholar
  15. 15.
    Passarelli, J., Murphy, M., Del Re.R., et al., SPIE Advanced Lithography, 2015, vol. 9425, p. 94250.Google Scholar
  16. 16.
    Gushchin, A.V., Sharutin, D.V., Prytkova, L.K., et al., Zh. Obshch. Khim., 2011, vol. 81, no. 3, p. 493.Google Scholar
  17. 17.
    Data Collection. Reduction and Correction Program, CrysAlis Pro-Software Package, Agilent Technologies, 2012.Google Scholar
  18. 18.
    SAINT. Data Reduction and Correction Program, Version 8.27B, Madison: Bruker AXS Inc., 2012.Google Scholar
  19. 19.
    SCALE3 ABSPACK: Empirical Absorption Correction. CrysAlis Pro-Software Package, Agilent Technologies, 2012.Google Scholar
  20. 20.
    Sheldrick, G.M., SADABS-2012/1. Bruker/Siemens Area Detector Absorption Correction Program, Madison (WI, USA): Bruker AXS Inc., 2012.Google Scholar
  21. 21.
    Sheldrick, G.M. SHELXTL. V.6.14. Structure Determination Software Suite, Madison: Bruker AXS, 2003.Google Scholar
  22. 22.
    Hansen, N.K. and Coppens, P., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1978, vol. 34, no. 6, p. 909.CrossRefGoogle Scholar
  23. 23.
    Jelsch, C., Guillot, B., Lagoutte, A., et al., J. Appl. Crystallogr., 2005, vol. 38, no. 1, p. 38.CrossRefGoogle Scholar
  24. 24.
    Allen, F.H., Kennard, O., Watson, D.G., et al., J. Chem. Soc., Perkin Trans., 1987, no. 12, p. 2.Google Scholar
  25. 25.
    Hirshfeld, F., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 2, p. 239.CrossRefGoogle Scholar
  26. 26.
    Stash, A. and Tsirelson, V., J. Appl. Crystallogr., 2002, vol. 35, no. 3, p. 371.CrossRefGoogle Scholar
  27. 27.
    Addison, A.W., Rao, T.N., Reedijk, J., et al., Dalton Trans., 1984, no. 7, p. 1349.Google Scholar
  28. 28.
    Groom, C.R., Bruno, I.J., Lightfoot, M.P., et al., Acta Crystallogr., 2016, vol. 72, no. 2, p. 171.Google Scholar
  29. 29.
    Bader, R.F.W., Atoms in Molecules, A Quantum Theory, Oxford: Oxford Univ. Press, 1990.Google Scholar
  30. 30.
    Fukin, G.K., Samsonov, M.A., Kalistratova, O.S., et al., Struct. Chem., 2016, vol. 27, no. 1, p. 357.CrossRefGoogle Scholar
  31. 31.
    Fukin, G.K., Samsonov, M.A., Arapova, A.V., et al., J. Solid State Chem., 2017, vol. 254, p. 32.CrossRefGoogle Scholar
  32. 32.
    Fukin, G.K., Samsonov, M.A., Baranov, E.V., et al., Russ. J. Coord. Chem., 2018, vol. 44, no. 10, p. 626. https://doi.org/10.1134/S1070328418100020CrossRefGoogle Scholar
  33. 33.
    Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, nos. 3–4, p. 170.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. K. Fukin
    • 1
    Email author
  • E. V. Baranov
    • 1
  • A. V. Cherkasov
    • 1
  • R. V. Rumyantsev
    • 1
  1. 1.Razuvaev Institute of Organometallic Chemistry, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations