Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 1, pp 62–73 | Cite as

Synthesis, Characterization, and Catalytic Activity of Heteroleptic Rhodium Complex for C–N Couplings

  • M. N. ZafarEmail author
  • Fouzia Perveen
  • A. Naz
  • Ehsan Ullah Mughal
  • Gul-e-Saba
  • K. Hina
Article
  • 9 Downloads

Abstract

We have reported synthesis of complex [Rh(COD)(L{Me})Cl] (III), where L{Me} (II) is N-(1-methylpyridin-4(1H)-ylidene)benzamide and COD is 1,5-cyclooctadiene. Monodentate ligand L{Me} was synthesized by deprotonation of [HL{Me}][OTf] (I) with sodium hydride. [HL{Me}][OTf] was synthesised by methylation of N-(pyridin-4-yl)benzamide (HL) with methyl triflate. All the three synthesized compounds were characterized by FT-IR, NMR (1H and 13C), elemental and MS analyses. The structure of complex I was further explored with single crystal XRD and computational studies. Complex I was found as a good catalyst for C–N coupling reactions. Molecular docking revealed strong binding of rhodium complex with myoglobin.

Keywords:

N-(1-alkylpyridin-4(1H)-ylidene)amide rhodium heteroleptic complex density functional theory molecular docking myoglobin composites C–N couplings 

REFERENCES

  1. 1.
    Hopkinson, M.N., Richter, C., Schedler, M., and Glorius, F., Nature, 2014, vol. 510, p. 485.CrossRefGoogle Scholar
  2. 2.
    Peris, E., Chem. Rev., 2017.  https://doi.org/10.1021/acs.chemrev.6b00695
  3. 3.
    Boyd, P.D.W., Wright, L.J., and Zafar, M.N., Inorg. Chem., 2011, vol. 5, p. 10522.CrossRefGoogle Scholar
  4. 4.
    Redmore, S.M., Rickard, C.E.F., Webb, S.J., and Wright, L.J., Inorg. Chem., 1997, vol. 36, p. 4743.CrossRefGoogle Scholar
  5. 5.
    Zhang, J., Liu, Q., Duan, C., et al., Dalton Trans., 2002, vol. 14, p. 591.CrossRefGoogle Scholar
  6. 6.
    Rowland, J.M., Thornton, M.L., Olmstead, M.M., and Mascharak, P.K., Inorg. Chem., 2001, vol. 40, p. 1069.CrossRefGoogle Scholar
  7. 7.
    Qi, J.Y., Ma, H.X., Li, X.J., et al., Chem. Commun., 2003, vol. 11, p. 1294.CrossRefGoogle Scholar
  8. 8.
    Qi, J.Y., Qiu, L.Q., Lam, K.H., et al., Chem. Commun., 2003, vol. 9, p. 1058.CrossRefGoogle Scholar
  9. 9.
    Mun~iz, K. and Iglesias, A., Angew.Chem. Int. Ed., 2007, vol. 46, p. 6350.CrossRefGoogle Scholar
  10. 10.
    Fortney, C.F. and Shepherd, R.E., Inorg. Chem. Commun., 2004, vol. 7, p. 1065.CrossRefGoogle Scholar
  11. 11.
    Wong, C.M., Peterson, M.B., Pernik, I., et al., Inorg. Chem., 2017, vol. 56, p. 14682.CrossRefGoogle Scholar
  12. 12.
    Busetto, L., Cassani, M.C., Femoni, C., et al., Organometallics, 2011, vol. 30, p. 5258.CrossRefGoogle Scholar
  13. 13.
    Vuong, K.Q., Timerbulatova, M.G., Peterson, M.B., et al., Dalton Trans., 2013, vol. 42, p. 14298.CrossRefGoogle Scholar
  14. 14.
    Donnelly, K.F., Segarra, C., Shao, L.X., et al., Organometallics, 2015, vol. 34, p. 4076.CrossRefGoogle Scholar
  15. 15.
    Navarro, M., Li, M., Muller-Bunz, H., et al., Chem. Eur. J., 2016, vol. 22, p. 6740.CrossRefGoogle Scholar
  16. 16.
    Burgess, M.G., Zafar, M.N., Horner, S.T., et al., Inorg. Chim. Acta, 2016, vol. 450, p. 124.CrossRefGoogle Scholar
  17. 17.
    Dragnea, B., Chen, C., Kwak, E.-S., et al., J. Am. Chem. Soc., 2003, vol. 125, p. 6374.CrossRefGoogle Scholar
  18. 18.
    Braha, O., Walker, B., Cheley, S., et al., Chem. Biol., 1997, vol. 4, p. 497.CrossRefGoogle Scholar
  19. 19.
    Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J.F., and Willner, I., Science, 2003, vol. 299, p. 1877.CrossRefGoogle Scholar
  20. 20.
    Benson, D.E., Wisz, M.S., and Hellinga, H.W., Curr. Opin. Biochem., 1998, vol. 9, p. 370.CrossRefGoogle Scholar
  21. 21.
    Lu, Y., Berry, S.M., and Pfister, T.D., Chem. Rev., 2001, vol. 101, p. 3047.CrossRefGoogle Scholar
  22. 22.
    Straface, A.L., Myers, J.H., Kirchick, H.J., and Blick, K.E., Am. J. Clin. Pathol., 2008, vol. 129, p. 788.CrossRefGoogle Scholar
  23. 23.
    McCord, J., Nowak, R.M., McCullough, P.A., et al., Circulation, 2001, vol. 104, p. 1483.CrossRefGoogle Scholar
  24. 24.
    Sallach, S.M., Nowak, R., Hudson, M.P., et al., Am. J. Cardiol., 2004, vol. 94, p. 864.CrossRefGoogle Scholar
  25. 25.
    Apple, F.S., Christenson, R.H., Valdes, R., et al., Clin Chem., 1999, vol. 45, p. 199.Google Scholar
  26. 26.
    Zhang, B., Tamez-Vela, J.M., Solis, S., et al., Med. Eng., 2013, vol. 2013, p. 1.Google Scholar
  27. 27.
    Debreczeni, J.E., Bullock, A.N., Atilla, G.E., et al., Angew. Chem. Int. Ed., 2006, vol. 45, p. 1580.CrossRefGoogle Scholar
  28. 28.
    Lu, Y., Angew. Chem. Int. Ed., 2006, vol. 45, p. 5588.CrossRefGoogle Scholar
  29. 29.
    Ohashi, M., Koshiyama, T., Ueno, T., et al., Angew. Chem. Int. Ed., 2003, vol. 42, p. 1005.CrossRefGoogle Scholar
  30. 30.
    Ueno, T., Ohashi, M., Kono, M., et al., Inorg. Chem., 2004, vol. 43, p. 2852.CrossRefGoogle Scholar
  31. 31.
    Ueno, T., Koshiyama, T., Ohashi, M., et al., J. Am. Chem. Soc., 2005, vol. 127, p. 6556.CrossRefGoogle Scholar
  32. 32.
    Li, C. and Xiao, J., J. Am. Chem. Soc., 2008, vol. 130, p. 13208.CrossRefGoogle Scholar
  33. 33.
    Dürrenberger, M., Heinisch, T., Wilson, Y.M., et al., Angew. Chem. Int. Ed., 2011, vol. 50, p. 3026.CrossRefGoogle Scholar
  34. 34.
    Creus, M., Pordea, A., Rossel, T., et al., Angew. Chem. Int. Ed., 2008, vol. 47, p. 1400.CrossRefGoogle Scholar
  35. 35.
    Xu, L., Zhu, Q., Huang, G., et al., J. Org. Chem., 2012, vol. 77, p. 3017.CrossRefGoogle Scholar
  36. 36.
    Beyramabadi, A. and Morsali, A., Int. J. Phys. Sci., 2011, vol. 6, p. 1780.Google Scholar
  37. 37.
    Monajjemi, M., Sayadian, M., Zare, K., et al., Int. J. Phys. Sci., 2011, vol. 6, p. 4063.Google Scholar
  38. 38.
    Zafar, M.N., Masood, S., Nazar, M.F., et al., J. Chin. Chem. Soc., 2017, vol. 64, p. 1.CrossRefGoogle Scholar
  39. 39.
    Epsztajn, J. and Jozwiak, A., Eur. J. Org. Chem., 2004, vol. 2004, p. 3254.Google Scholar
  40. 40.
    Velde, G.T., Bickelhaupt, F.M., Gisbergen, S.J.A., et al., J. Comput. Chem., 2001, vol. 22, p. 931.CrossRefGoogle Scholar
  41. 41.
    Baerends, E.J., Amsterdam Density Functional (ADF 2013), Software for Chemistry and Materials (SCM), Theoretical Chemistry, Amsterdam: Vrije Univ. http:// www.scm.com.Google Scholar
  42. 42.
    Becke, A.D., Phys. Rev., A., 1998, vol. 38, p. 3098.CrossRefGoogle Scholar
  43. 43.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev., B: Condens. Matter Mater. Phys., 1988, vol. 37, p. 785.CrossRefGoogle Scholar
  44. 44.
    Protein Data Bank. https://www.rcsb.org/pdb/home/ home.do. Accessed December 27, 2017.Google Scholar
  45. 45.
    Doster, M.E. and Johnson, S.A., Angew. Chem. Int. Ed., 2009, vol. 121, p. 2219.CrossRefGoogle Scholar
  46. 46.
    Herrmann, W.A., Schütz, J., Frey, G.D., and Herdtweck, E., Organometallics, 2006, vol. 25, p. 2437.CrossRefGoogle Scholar
  47. 47.
    Wolf, S. and Plenio, H., J. Orgmet. Chem., 2009, vol. 694, p. 1487.CrossRefGoogle Scholar
  48. 48.
    Honorio, K.M. and Da Silva, A.B.F., Int. J. Quant. Chem., 2003, vol. 95, p. 126.CrossRefGoogle Scholar
  49. 49.
    Li, Y., Yang, M.M., Liu, Y.Y., et al., J. Mol. Struct., 2011, vol. 987, p. 206.CrossRefGoogle Scholar
  50. 50.
    Li, Y., Zhang, H., Liu, Y.Y., et al., J. Mol. Struct., 2011, vol. 997, p. 110.CrossRefGoogle Scholar
  51. 51.
    Kryger, G., Silman, I., and Sussman, J., J. Physiol., 1998, vol. 92, p. 191.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. N. Zafar
    • 1
    Email author
  • Fouzia Perveen
    • 2
  • A. Naz
    • 1
  • Ehsan Ullah Mughal
    • 3
  • Gul-e-Saba
    • 4
  • K. Hina
    • 3
  1. 1.Department of Chemistry, Quaid-i-Azam UniversityIslamabadPakistan
  2. 2.RCMS, National University of Science and TechnologyIslamabadPakistan
  3. 3.Department of Chemistry, University of GujratGujratPakistan
  4. 4.Institute of Marine Biotechnology, University MalaysiaTerengganuMalaysia

Personalised recommendations