Russian Journal of Coordination Chemistry

, Volume 45, Issue 1, pp 30–35 | Cite as

Samarium, Europium, and Gadolinium Complexes with 4-(2,1,3-Benzothiadiazol-4-ylamino)pent-3-en-2-onate

  • T. S. SukhikhEmail author
  • D. S. Ogienko
  • D. A. Bashirov
  • N. V. Kurat’eva
  • A. I. Smolentsev
  • S. N. Konchenko


New lanthanide complexes with 4-(2,1,3-benzothiadiazol-4-ylamino)pent-3-en-2-onate (L) [Ln(L)3] are synthesized using two methods: by the reaction of Ln(N(SiMe3)2)3 with the protonated form of the ligand LH (Ln = Sm, Gd) and by the reaction of LnCl3 (Ln = Eu) with LH in the presence of KN(SiMe3)2 as a base. According to the X-ray diffraction data, the synthesized complexes [Ln(L)3] · 0.5Solv (Solv = THF, C7H8) are isotypical (CIF files CCDC nos. 1826520, 1826521, and 1826522 for Sm, Eu, and Gd, respectively). A specific feature of the structures is the disordering of the metal atom and one of the ligands over two positions when the fragments of the ligands are arranged via the head-to-tail type occupying the same volume of the space. This probably leads to failure in the crystal lattice. The photoluminescence spectra of [Sm(L)3] · 0.5THF are recorded. A relationship between the coordination mode of the ligand and the position of the long-wavelength band of the electron transitions in the complexes with the L ligand is revealed.


complexes lanthanides heterocyclic ligands crystal structure photoluminescence 



The authors are grateful to A.P. Zubareva and O.S. Koshcheeva for performing elemental analysis and to A.A. Ryadun for recording luminescence spectra.

This work was carried out in terms of the state task and was supported by the Russian Foundation for Basic Research, project no. 16-03-00637.


  1. 1.
    Neto, B.A.D., Lapis, A.A.M., da Silva Júnior, E.N., et al., Eur. J. Org. Chem., 2013, p. 228.Google Scholar
  2. 2.
    Gu, C., Liu, D., Wang, J., et al., J. Mater. Chem. A, 2018, vol. 6, p. 2371.CrossRefGoogle Scholar
  3. 3.
    Crossley, D.L., Urbano, L., Neumann, R., et al., ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 28243.CrossRefGoogle Scholar
  4. 4.
    Chulanova, E.A., Pritchina, E.A., Malaspina, L.A., et al., Chem.-Eur. J., 2017, vol. 23, p. 852.CrossRefGoogle Scholar
  5. 5.
    Lonchakov, A. and Rakitin, O., Gritsan, N., et al., Molecules, 2013, vol. 18, p. 9850.CrossRefGoogle Scholar
  6. 6.
    Xu, Z., Kong, L., Wang, Y., et al., Org. Electron., 2018, vol. 54, p. 94.CrossRefGoogle Scholar
  7. 7.
    Neto, B.A.D., Carvalho, P.H.P.R., and Correa, J.R., Acc. Chem. Res., 2015, vol. 48, p. 1560.CrossRefGoogle Scholar
  8. 8.
    da Cruz, E.H.G., Carvalho, P.H.P.R., Correa, J.R., et al., New J. Chem., 2014, vol. 38, p. 2569.CrossRefGoogle Scholar
  9. 9.
    Mota, A.A.R., Corrêa, J.R., Carvalho, P.H.P.R., et al., Org. Chem., 2016, vol. 81, p. 2958.CrossRefGoogle Scholar
  10. 10.
    Aguiar, L.D.O., Regis, E., Tuzimoto, P., et al., Liq. Cryst., 2018, vol. 45, p. 49.CrossRefGoogle Scholar
  11. 11.
    Langis-Barsetti, S., Maris, T., and Wuest, J.D., Org. Chem., 2017, vol. 82, p. 5034.CrossRefGoogle Scholar
  12. 12.
    Cheng, Q., Han, X., Tong, Y., et al., Inorg. Chem., 2017, vol. 56, p. 1696.CrossRefGoogle Scholar
  13. 13.
    Plebst, S., Bubrin, M., Schweinfurth, D., et al., Z. Naturforsch., A: Phys. Sci., 2017, vol. 72, p. 839.Google Scholar
  14. 14.
    Goswami, S., Winkel, R.W., and Schanze, K.S., Inorg. Chem., 2015, vol. 54, p. 10007.CrossRefGoogle Scholar
  15. 15.
    Mancilha, F.S., Barloy, L., Rodembusch, F.S., et al., Dalton Trans., 2011, vol. 40, p. 10535.CrossRefGoogle Scholar
  16. 16.
    Gallardo, H., Conte, G., Bortoluzzi, A.J., et al., Inorg. Chim. Acta, 2011, vol. 365, p. 152.CrossRefGoogle Scholar
  17. 17.
    Gallardo, H., Conte, G., Tuzimoto, P., et al., Inorg. Chem. Commun., 2008, vol. 11, p. 1292.CrossRefGoogle Scholar
  18. 18.
    Sukhikh, T.S., Bashirov, D.A., Ogienko, D.S., et al., RSC Adv., 2016, vol. 6, p. 43901.CrossRefGoogle Scholar
  19. 19.
    Sukhikh, T.S., Ogienko, D.S., Bashirov, D.A., et al., J. Coord. Chem., 2016, vol. 69, p. 3284.CrossRefGoogle Scholar
  20. 20.
    Sukhikh, T.S., Komarov, V.Y., Konchenko, S.N., et al., Polyhedron, 2018, vol. 139, p. 33.CrossRefGoogle Scholar
  21. 21.
    Sukhikh, T.S., Bashirov, D.A., Shuvaev, S., et al., Polyhedron, 2018, vol. 141, p. 77.CrossRefGoogle Scholar
  22. 22.
    Sukhikh, T.S., Bashirov, D.A., Kolybalov, D.S., et al., Polyhedron, 2017, vol. 124, p. 139.CrossRefGoogle Scholar
  23. 23.
    Sukhikh, T.S., Bashirov, D.A., Kuratieva, N.V., et al., Dalton Trans., 2015, vol. 44, p. 5727.CrossRefGoogle Scholar
  24. 24.
    Herrmann, W.A., Synthetic Methods of Organometallic and Inorganic Chemistry: Lanthanides and Actinides, Thieme Publishing Group, 1997, vol. 6.Google Scholar
  25. 25.
    APEX2 (version 2.0). SAINT (version 8.18c), and SAD-ABS (version 2.11), Madison: Bruker Advanced X‑ray Solutions, 2000−2012.Google Scholar
  26. 26.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, p. 112.CrossRefGoogle Scholar
  27. 27.
    Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.CrossRefGoogle Scholar
  28. 28.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.CrossRefGoogle Scholar
  29. 29.
    Armelao, L., Quici, S., Barigelletti, F., et al., Coord. Chem. Rev., 2010, vol. 254, p. 487.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. S. Sukhikh
    • 1
    • 2
    Email author
  • D. S. Ogienko
    • 1
  • D. A. Bashirov
    • 1
    • 2
  • N. V. Kurat’eva
    • 1
    • 2
  • A. I. Smolentsev
    • 1
  • S. N. Konchenko
    • 1
    • 2
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations