Russian Journal of Coordination Chemistry

, Volume 44, Issue 12, pp 755–764 | Cite as

Coordination Compounds of Cobalt(II), Nickel(II), and Copper(II) Halides with 2-Methyl-1,2,4-Triazolo[1,5-a]benzimidazole

  • I. I. DyukovaEmail author
  • T. A. Kuz’menko
  • V. Yu. Komarov
  • T. S. Sukhikh
  • E. V. Vorontsova
  • L. G. LavrenovaEmail author


New coordination compounds of Co(II), Ni(II), and Cu(II) halides with 2-methyl-1,2,4-triazolo[1,5-a]benzimidazole (L), [Co(L)2Cl2] (Ia), [Ni(L)2(H2O)4]Cl2 · 4H2O (II), and [Сu2(L)4(µ-Br)2Br2] (IIIa), are synthesized. The complexes are studied by X-ray structure analysis (СIF files CCDC nos. 1825006–1825008), electronic (diffuse reflectance) spectroscopy, and IR spectroscopy. In compounds Ia, II, and IIIa, ligand L is coordinated to the metal by the N4 atom of the triazole fragment. The study of the cytotoxic effect of the ligand and synthesized complexes on the Hep-2 line (laryngeal cancer cells) shows a considerably higher activity of the copper(II) complex than that of the ligand.


synthesis complexes 3d metals 2-methyl-1,2,4-triazolo[1,5-a]benzimidazole X-ray structure analysis electronic spectroscopy IR spectroscopy cytotoxic activity 



The cytotoxicity of the synthesized compounds was studied using the equipment of the Proteomics Center for Collective Use at the Institute of Molecular Biology and Biophysics of the Federal Research Center of Fundamental and Translational Medicine (Novosibirsk, Russia).

The authors are grateful to N.P. Korotkevich for the detection of diffraction patterns, to N.I. Alferova for recording IR spectra, and to I.V. Yushina for recording electronic spectra.

This work was supported by the Russian Foundation for Basic Research, project no. 16-53-00020 Vel_a.


  1. 1.
    Goker, H., Alp, M., and Yildiz, S., Molecules, 2005, vol. 10, p. 1377.CrossRefGoogle Scholar
  2. 2.
    Iwao, E., Yamamoto, K., Yokoyama, Y., et al., J. Infect. Chemother., 2004, vol. 10, p. 90.CrossRefGoogle Scholar
  3. 3.
    Aminabhavi, T.M., Biradar, N.S., and Patil, S.B., Inorg. Chim. Acta, 1986, vol. 125, p. 125.CrossRefGoogle Scholar
  4. 4.
    Tewari, A.K. and Mishra, A., Indian J. Chem., B, 2007, vol. 45, p. 489.Google Scholar
  5. 5.
    Boiani, M. and Gonzalez, M., J. Med. Chem., 2005, vol. 5, p. 409.Google Scholar
  6. 6.
    Mavrova, A.Ts., Wesselinova, D., and Anichina, K., J. Chem. Technol. Met., 2016, vol. 51, p. 660.Google Scholar
  7. 7.
    Akbay, A., Oren, I., Temiz-Arpaci, O., et al., Arzneim. Forsch., 2003, vol. 53, p. 266.Google Scholar
  8. 8.
    Yurdakul, S. and Kurt, M., J. Mol. Struct., 2003, vol. 650, p. 181.CrossRefGoogle Scholar
  9. 9.
    Singh, V.P., Katiyar, A., and Singh, S., J. Coord. Chem., 2009, vol. 62, p. 1336.CrossRefGoogle Scholar
  10. 10.
    Gumus, F., Algul, O., Eren, G., et al., Eur. J. Med. Chem., 2003, vol. 38, p. 473.CrossRefGoogle Scholar
  11. 11.
    Sau, D.K., Butcher, R.J., Chaudhuri, S., and Saha, N., Mol. Cell. Biochem., 2003, vol. 253, p. 21.CrossRefGoogle Scholar
  12. 12.
    Mylonas, S., Valavanidis, A., Dimitropoulos, K., et al., J. Inorg. Biochem., 1988, vol. 34, p. 265.CrossRefGoogle Scholar
  13. 13.
    Mothilal, K.K., Karunakaran, C., and Rajendran, A., Murugesan, R., J. Inorg. Biochem., 2004, vol. 98, p. 322.CrossRefGoogle Scholar
  14. 14.
    Podunavac-Kuzmanovic, S.O. and Cvetcovic, D.M., J. Serb. Chem. Soc., 2007, vol. 72, p. 459.CrossRefGoogle Scholar
  15. 15.
    Devereux, M., O’Shea, D., Kellett, A., et al., J. Inorg. Biochem., 2007, vol. 101, p. 881.CrossRefGoogle Scholar
  16. 16.
    Paolini, J.P., Top. Heterocycl. Chem., Weissderger, A. and Taylor, E.C., Eds., New York: Intersci., 1977, p. 1.Google Scholar
  17. 17.
    Kuz’menko, V.V., Kuz’menko, T.A., Pozharskii, A.F., et al., Khim. Geterotsikl. Soedin., 1989, vol. 25, no. 2, p. 168.Google Scholar
  18. 18.
    Han, X., Pin, S.S., Burris, K., et al., Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 4029.CrossRefGoogle Scholar
  19. 19.
    Anisimova, V.A., Spasov, A.A., Tolpygin, I.E., et al., Khim.-farm. Zh., 2010, vol. 44, no. 7, p. 7.Google Scholar
  20. 20.
    Gütlich, P. and Goodwin, H., Top Curr. Chem., 2004, vol. 233, p. 1.CrossRefGoogle Scholar
  21. 21.
    Halcrow, M.A., Spin-Crossover Materials Properties and Applications, UK: Wiley, 2013.CrossRefGoogle Scholar
  22. 22.
    Lavrenova, L.G. and Shakirova, O.G., Eur. J. Inorg. Chem., 2013, nos. 5−6, p. 670.Google Scholar
  23. 23.
    Kane, J.M., Dudley, M.W., Sorensen, S.M., and Miller, F.P., J. Med. Chem., 1988, vol. 31, p. 1253.CrossRefGoogle Scholar
  24. 24.
    Kane, J.M., Baron, B.M., Dudley, M.W., et al., J. Med. Chem., 1990, vol. 33, p. 2772.CrossRefGoogle Scholar
  25. 25.
    Kochikyan, T.V., Samvelyan, M.A., Arutyunyan, E.V., et al., Pharm. Chem. J., 2011, vol. 44, p. 525.CrossRefGoogle Scholar
  26. 26.
    Matesanz, A.I., Joie, C., and Souza, P., Dalton Trans., 2010, vol. 39, p. 7059.CrossRefGoogle Scholar
  27. 27.
    Groessl, M., Reisner, E., Hartinger, C.G., et al., J. Med. Chem., 2007, vol. 50, p. 2185.CrossRefGoogle Scholar
  28. 28.
    Bagihalli, G.B., Avaji, P.G., Patil, S.A., and Badami, P.S., Eur. J. Med. Chem., 2008, vol. 43, p. 2639.CrossRefGoogle Scholar
  29. 29.
    Groom, C.R., Bruno, I.J., Lightfoot, M.P., and Wards, C., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2016, vol. 72, p.171.CrossRefGoogle Scholar
  30. 30.
    ICSD web version 3.7.0 released. FIZ Karlsruhe, 2017. Scholar
  31. 31.
    APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12), Madison: Bruker AXS Inc., 2004.Google Scholar
  32. 32.
    Sheldrick, G.M., Acta Crystalllogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.Google Scholar
  33. 33.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.CrossRefGoogle Scholar
  34. 34.
    Lavrenova, L.G., Kuz’menko, T.A., Ivanova, A.D., et al., New J. Chem., 2017, vol. 41, p. 4341.CrossRefGoogle Scholar
  35. 35.
    Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1987.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. I. Dyukova
    • 1
    • 2
    Email author
  • T. A. Kuz’menko
    • 3
  • V. Yu. Komarov
    • 1
    • 2
  • T. S. Sukhikh
    • 1
    • 2
  • E. V. Vorontsova
    • 4
  • L. G. Lavrenova
    • 1
    • 2
    Email author
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National State Research UniversityNovosibirskRussia
  3. 3.Institute of Physical and Organic Chemistry, Southern Federal UniversityRostov-on-DonRussia
  4. 4.Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational MedicineNovosibirskRussia

Personalised recommendations