Russian Journal of Coordination Chemistry

, Volume 44, Issue 12, pp 786–791 | Cite as

Synthesis, Crystal Structure, and Studies on Mechanism of D-π-A Ferrocene Derivative

  • Y. M. ZhangEmail author
  • X. Gao
  • P. Liu


Microwave-assisted solvent-free synthesis of new (D-π-A) chromogenes, 2-ferrocenyl-1,1-dicyanobuta-1,3-diene derivatives (II), have been accomplished through the condensation of 2-(1-ferrocenylethylidene)malononitrile (I) and aromatic aldehydes with sarcosine as the catalyst and identified by 1H NMR, 13C NMR and FT-IR. Compound IId was determined by X-ray crystallography (CIF file CCDC no. 1056735). The crystal belongs to monoclinic, space group P21/c. The possible reaction mechanism has been studied.


ferrocene derivative crystal structure sarcosine-catalyst microwave irradiation reaction mechanism 



This work was supported by Natural Science Foundation of Hebei Province (no. B2014208094).


  1. 1.
    Mufula, A.I., Aderibigbe, B.A., Neuse, E.W., and Mukaya, H.E., J. Inorg. Organomet., 2012, vol. 22, no. 2, p. 423.CrossRefGoogle Scholar
  2. 2.
    Snegur, L.V., Simenel, A.A., Rodionov, A.N., and Boev, V.I., Russ. Chem. Bull., 2014, vol. 63, no. 1, p. 26.CrossRefGoogle Scholar
  3. 3.
    Shi, Y., Xiao, L., Wu, D., et al., Chem. Eur. J., 2017, vol. 23, no. 55, p. 13587.CrossRefGoogle Scholar
  4. 4.
    Yu, J., Jiao, L., Yang, Y., et al., Org. Lett., 2017, vol. 19, no. 3, p. 690.CrossRefGoogle Scholar
  5. 5.
    Rabti, A., Mayorga-Martinez, C.C., Baptista-Pires, L., et al., Anal. Chim. Acta, 2016, vol. 926, p. 28.CrossRefGoogle Scholar
  6. 6.
    Martos-Maldonado, M.C., Quesada-Soriano, I., Garcia-Maroto, F., et al., Bioorg. Med. Chem. Lett., 2012, vol. 22, no. 23, p. 7256.CrossRefGoogle Scholar
  7. 7.
    Zhu, P., Song, F., Ma, P., et al., J. Mater. Chem. C, 2016, vol. 4, no. 44, p. 10471.CrossRefGoogle Scholar
  8. 8.
    Jeong, H., Kim, D., Wang, G., et al., Adv. Funct. Mater., 2014, vol. 24, no. 17, p. 2472.CrossRefGoogle Scholar
  9. 9.
    Kaur, S., Kaur, M., Kaur, P., et al., Coord. Chem. Rev., 2017, vol. 343, p. 185.CrossRefGoogle Scholar
  10. 10.
    Shi, Y., Xiao, L., Wu, D., Li, F., et al., J. Organomet. Chem., 2016, vol. 817, p. 36.CrossRefGoogle Scholar
  11. 11.
    Fabre, B., Acc. Chem. Res., 2010, vol. 43, no. 12, p. 1509.Google Scholar
  12. 12.
    Ekti, S.F. and Deniz, H., Inorg. Chem. Commun., 2008, vol. 11, p. 1027.CrossRefGoogle Scholar
  13. 13.
    Deniz, H., Ekti Dal, S.F., Varol, G.A., and Hur, E., J. Organomet. Chem., 2011, vol. 696, p. 2543.CrossRefGoogle Scholar
  14. 14.
    Corey, E.J., Angew. Chem., Int. Ed., 2002, vol. 41, p. 1650.CrossRefGoogle Scholar
  15. 15.
    Sheldrick, G.M., SHELXS-97, Program for X-ray Crystal Structure Solution, Göttingen: Univ. of Göttingen, 1997.Google Scholar
  16. 16.
    Sheldrick, G.M., SHELXL-97, Program for X-ray Crystal Structure Refinement, Göttingen: Univ. of Göttingen, 1997.Google Scholar
  17. 17.
    Wang, X.-S., Zhang, M-M., Li, Q., and Yao, C-S., Synth. Commun., 2009, vol. 393, p. 3045.CrossRefGoogle Scholar
  18. 18.
    Jarowski, P.D., Wu, Y.-L., Boudon, C., et al., Org. Biomol. Chem., 2009, vol. 7, p. 1312.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.College of Sciences, Hebei University of Science and TechnologyShijiazhuangP.R. China

Personalised recommendations