Halide Anion Templated Synthesis and Structural Characterization of Rhombic Dodecahedron Silver-Alkynyl Cage Complexes
- 16 Downloads
Abstract
A series of silver alkynyl cages were synthesized using ligand 3,5-di-tert-butyl-phenylethynide and were structurally characterized. Reaction with [Ag(ArC≡C)]n polymer and (nBu4N)X (X = F, Cl, Br) gave compounds incorporating different halogen anions (F−, Cl−, Br−) and a hollow compound, namely [Ag14(ArC≡C)12(MeCN)6](OTf)2 · 4MeCN (I), [Ag14(ArC≡C)12(EtOH)2F]F · EtOH (II), [Ag14(ArC≡C)12(THF)2Cl]OH · THF (III) and [Ag14(ArC≡C)12(MeCN)4Br]OH (IV) (ArC≡C = 3,5-di-tert-butyl-phenylethynide). Direct synthesis of anion containing cages and indirect synthesis from the hollow cage were achieved. Structural studies (CCDC nos. 1831128 (I), 1831129 (II), 1831130 (III), and 1831131 (IV)) revealed that the incorporation of anions reduced the mean Ag−Ag bond length and therefore the cage size, giving the order of F@Ag14 ≈ Cl@Ag14 < Br@Ag14 < halogen-free. The cage size was larger than those of similar Ag14 clusters reported previously, which is likely due to the use of bulky alkynyl ligands.
Keywords:
silver(I) alkynyl ligands cage complexes template synthesis anions crystal structuresREFERENCES
- 1.Wang, Q.M. and Mak, T.C.W., Angew. Chem. Int. Ed., 2001, vol. 40, no. 6, p. 1130.CrossRefGoogle Scholar
- 2.Shahi, S.P. and Koide, K., Angew. Chem. Int. Ed., 2004, vol. 43, no. 19, p. 2525.CrossRefGoogle Scholar
- 3.Pouwer, R.H., Williams, C.M., Raine, A.L., et al., Org. Lett., 2005, vol. 7, no. 7, p. 1323.CrossRefGoogle Scholar
- 4.Halbes-Letinois, U., Weibel, J.M., and Pale, P., Chem. Soc. Rev., 2007, vol. 36, no. 5, p. 759.CrossRefGoogle Scholar
- 5.Yamamoto, Y., Chem. Rev., 2008, vol. 108, no. 8, p. 3199.CrossRefGoogle Scholar
- 6.He, C., Guo, S., Ke, J., et al., J. Am. Chem. Soc., 2012, vol. 134, no. 13, p. 5766.CrossRefGoogle Scholar
- 7.Gao, G.-G., Cheng, P.-S., and Mak, T.C.W., J. Am. Chem. Soc., 2009, vol. 131, no. 51, p. 18257.CrossRefGoogle Scholar
- 8.Xie, Y.P. and Mak, T.C.W., Angew. Chem. Int. Ed., 2012, vol. 51, no. 35, p. 8783.CrossRefGoogle Scholar
- 9.Zhang, Z.Y., Yang, Y., Sun, H.Y., et al., Inorg. Chim. Acta, 2015, vol. 434, p. 158.CrossRefGoogle Scholar
- 10.Rais, D., Yau, J., Mingos, D.M.P., et al., Angew. Chem. Int. Ed., 2001, vol. 40, no. 18, p. 3464.CrossRefGoogle Scholar
- 11.Kennedy, A.R., Brown, K.G., Graham, D., et al., New J. Chem., 2005, vol. 29, no. 6, p. 826.CrossRefGoogle Scholar
- 12.Zhao, L. and Mak, T.C.W., J. Am. Chem. Soc., 2005, vol. 127, no. 43, p. 14966.CrossRefGoogle Scholar
- 13.Bian, S.D., Jia, J.H., and Wang, Q.M., J. Am. Chem. Soc., 2009, vol. 131, no. 10, p. 3422.CrossRefGoogle Scholar
- 14.Bian, S.D., Wu, H.B., and Wang, Q.M., Angew. Chem. Int. Ed., 2009, vol. 48, no. 29, p. 5363.CrossRefGoogle Scholar
- 15.Abu-Salah, O.M., Ja’far, M.H., Al-Ohaly, A.R., et al., Eur. J. Inorg. Chem., 2006, vol. 2006, no. 12, p. 2353.CrossRefGoogle Scholar
- 16.Liu, X., Yi, Q.L., Han, Y.Z., et al., Angew. Chem. Int. Ed., 2015, vol. 54, no. 6, p. 1846.CrossRefGoogle Scholar
- 17.Zhang, R., Hao, X., Li, X.M., et al., Cryst. Growth Des., 2015, vol. 15, no. 5, p. 2505.CrossRefGoogle Scholar
- 18.Zhang, R., Zhao, C.Y., Li, X.M., et al., Dalton Trans., 2016, vol. 45, no. 32, p. 12772.CrossRefGoogle Scholar
- 19.Qiao, J., Shi, K., and Wang, Q.M., Angew. Chem. Int. Ed., 2010, vol. 49, no. 10, p. 1765.CrossRefGoogle Scholar
- 20.APEX2, SADABS, and SAINT, Madison: Bruker AXS Inc., 2012.Google Scholar
- 21.Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, p. 112.CrossRefGoogle Scholar
- 22.Rais, D., Mingos, D.M.P., Vilar, R., et al., J. Organomet. Chem., 2002, vol. 652, nos. 1−2, p. 87.CrossRefGoogle Scholar
- 23.Connell, T.U., Sandanayake, S., Khairallah, G.N., et al., Dalton Trans., 2013, vol. 42, no. 14, p. 4903.CrossRefGoogle Scholar