Advertisement

Russian Journal of Coordination Chemistry

, Volume 44, Issue 12, pp 792–799 | Cite as

Syntheses, Structures, and Luminescent Properties of Two Alkaline Earth Metal Coordination Polymers from Hydroxymethyl Imidazole Dicarboxylate

  • G. Chen
  • H. H. Lan
  • Z. X. Li
  • D. J. Li
  • G. J. Peng
  • S. L. CaiEmail author
  • S. R. ZhengEmail author
  • W. G. Zhang
Article
  • 13 Downloads

Abstract

Two new alkaline earth metal coordination polymers, which are [Ba(H2IDC)-(H3HmIDC)(H2O)2]n (I) and [Sr(H2HmIDC)]n (II) [H3IDC = 1H-imidazole-4,5-dicarboxylic acid, H4HmIDC = 2-(hydroxymethyl)-1H-imidazole-4,5-dicarboxylic acid), respectively, have been successfully synthesized under solvothermal conditions by employing H4HmIDC as the starting material. Both compounds I and II were structurally characterized by diverse techniques, such as single crystal X-ray diffraction (CIF files CCDC nos. 1839705 (I) and 1839706 (II)), FT-IR spectra, powder X-ray diffraction, and thermogravimetric analyses. Compound I exhibits a two-dimentional (2D) coordination network with a (4, 4) topology based on dinuclear [Ba2O4] as second building units (SBUs). Whereas compound II features a 3D coordination framework based on infinite 1D inorganic chains as SBUs, which can be further simplified as a 5‑connected noy topology. In addition, the photoluminescent properties of both compounds I and II were also investigated.

Keywords:

imidazole-4,5-dicarboxylate alkaline earth metal coordination polymer luminescent property 

Notes

ACKNOWLEDGMENTS

This work was fnancially supported by the National Natural Science Foundation of P.R. China (grant nos. 21603076, 21571070 and 21473062), the Natural Science Foundation of Guangdong Province (grant nos. 2016A030310437 and 2018A030313193), and the Undergraduates’ Innovating Experimentation Project of SCNU and Guangdong Province (grant no. 20181462).

REFERENCES

  1. 1.
    Maji, T.K., Mostafa, G., Chang, H.C., and Kitagawa, S., Chem. Commun., 2005, p. 2436.Google Scholar
  2. 2.
    Liu, Y., Kravtsov, V.C., Larsen, R., and Eddaoudi, M., Chem. Commun., 2006, p. 1488.Google Scholar
  3. 3.
    Gurunatha, K.L., Uemura, K., and Maji, T.K., Inorg. Chem., 2008, vol. 47, p. 6578.CrossRefGoogle Scholar
  4. 4.
    Gu, Z.G., Cai, Y.P., Fang, H.C., et al., Chem Commun., 2010, vol. 46, p. 5373.CrossRefGoogle Scholar
  5. 5.
    Peralta, D., Chaplais, G., Simon-Masseron, A., et al., J. Am. Chem. Soc., 2012, vol. 134, p. 8815.CrossRefGoogle Scholar
  6. 6.
    Wang, C.F., Gao, E.Q., He, Z., and Yan, C.H., Chem. Commun., 2004, p. 720.Google Scholar
  7. 7.
    Xu, Q., Zou, R.Q., Zhong, R.Q., et al., Cryst. Growth Des., 2008, vol. 8, p. 2458.CrossRefGoogle Scholar
  8. 8.
    Cruz, C., Spodine, E., Vega, A., et al., Cryst. Growth Des., 2016, vol. 16, p. 2173.CrossRefGoogle Scholar
  9. 9.
    Cai, S.L., Zheng, S.R., Wen, Z.Z., et al., Cryst. Growth Des., 2012, vol. 12, p. 4441.CrossRefGoogle Scholar
  10. 10.
    Zhang, X.J., Liu, K., Bing, Y.M., et al., Dalton Trans., 2015, vol. 44, p. 7757.CrossRefGoogle Scholar
  11. 11.
    Cai, S.L., Zheng, S.R., Fan, J., et al., Inorg. Chem. Commun., 2011, vol. 14, p. 937.CrossRefGoogle Scholar
  12. 12.
    Yue, Z.F., Chen, Z.N., Yao, M.J., et al., RSC Adv., 2014, vol. 4, p. 33537.CrossRefGoogle Scholar
  13. 13.
    Shi, B.B., Zhong, Y.H., Guo, L.L., and Li, G., Dalton Trans., 2015, vol. 44, p. 4362.CrossRefGoogle Scholar
  14. 14.
    Li, Y.L., Wang, J., Shi, B.B., and Li, J.P., Supramol. Chem., 2016, vol. 28, p. 640.CrossRefGoogle Scholar
  15. 15.
    Huang, Q.Y., Zhao, Y., Fu, L., and Li, G., Russ. J. Coord. Chem., 2017, vol. 43, p. 604. doi 10.1134/ S1070328417090032 CrossRefGoogle Scholar
  16. 16.
    Li, X., Wu, B.L., Niu, C.Y., et al., Cryst. Growth Des., 2009, vol. 9, p. 3423.CrossRefGoogle Scholar
  17. 17.
    Wang, W.Y., Niu, X.L., Gao, Y.C., et al., Cryst. Growth Des., 2010, vol. 10, p. 4050.CrossRefGoogle Scholar
  18. 18.
    Zhang, F.W., Li, Z.F., Ge, T.Z., et al., Inorg. Chem., 2010, vol. 49, p. 3776.CrossRefGoogle Scholar
  19. 19.
    Feng, X., Miao, S.B., Li, T.F., and Wang, L.Y., Russ. J. Coord. Chem., 2011, vol. 37, p. 572. doi 10.1134/ S1070328411070050 CrossRefGoogle Scholar
  20. 20.
    Deng, J.H., Zhong, D.C., Luo, X.Z., et al., Cryst. Growth Des., 2012, vol. 12, p. 4861.CrossRefGoogle Scholar
  21. 21.
    Cai, S.L., Zheng, S.R., Wen, Z.Z., et al., CrystEngComm, 2012, vol. 14, p. 8236.CrossRefGoogle Scholar
  22. 22.
    Wang, C.J., Wang, T., Li, L., et al., Dalton Trans., 2013, vol. 42, p. 1715.CrossRefGoogle Scholar
  23. 23.
    Tan, Y.H., Wu, J.S., Yang, Q.R., et al., Polyhedron, 2013, vol. 57, p. 24.CrossRefGoogle Scholar
  24. 24.
    Gao, R.M., Li, J., Guo, M.W., and Li, G., Russ. J. Coord. Chem., 2014, vol. 40, p. 379. doi 10.1134/ S1070328414050042 CrossRefGoogle Scholar
  25. 25.
    Yang, R., Cai, S.L., Wen, Z.Z., et al., Inorg. Chem. Commun., 2014, vol. 46, p. 98.CrossRefGoogle Scholar
  26. 26.
    Zeng, R.H., Liang, J.H., Lin, L.J., et al., Z. Anorg. Allg. Chem., 2015, vol. 641, p. 2677.CrossRefGoogle Scholar
  27. 27.
    Sang, Y.L., Xin, J.F., and Gao, R.M., Russ. J. Coord. Chem., 2016, vol. 42, p. 410. doi 10.1134/ S1070328416050079 CrossRefGoogle Scholar
  28. 28.
    Cai, S.L., Zheng, S.R., Fan, J., et al., CrystEngComm, 2016, vol. 18, p. 1174.CrossRefGoogle Scholar
  29. 29.
    Cai, S.L., He, Z.H., Wu, W.H., et al., CrystEngComm, 2017, vol. 19, p. 3003.CrossRefGoogle Scholar
  30. 30.
    Cai, S.L., Zhang, K., Wang, S., et al., Struct. Chem., 2017, vol. 28, p. 577.CrossRefGoogle Scholar
  31. 31.
    Cai, S.L., Wang, S., He, Z.H., et al., Z. Anorg. Allg. Chem., 2017, vol. 643, p. 593.CrossRefGoogle Scholar
  32. 32.
    Cai, S.L., Lin, H.M., Yang, J.R., et al., Russ. J. Coord. Chem., 2018, vol. 44, p. 64. doi 10.1134/ S1070328418010025 CrossRefGoogle Scholar
  33. 33.
    Zheng, S.R., Cai, S.L., Pan, M., et al., CrystEngComm, 2011, vol. 13, p. 883.CrossRefGoogle Scholar
  34. 34.
    Li, T.T., Cai, S.L., Zeng, R.H., et al., Inorg. Chem. Commun., 2014, vol. 48, p. 40.CrossRefGoogle Scholar
  35. 35.
    Yang, H.X., Jian, S.J., Liang, Z., et al., Inorg. Chem. Commun., 2015, vol. 61, p. 57.CrossRefGoogle Scholar
  36. 36.
    Cai, S.L., Zheng, S.R., Wen, Z.Z., et al., Cryst. Growth Des., 2012, vol. 12, p. 3575.CrossRefGoogle Scholar
  37. 37.
    Zheng, S.R., Cai, S.L., Fan, J., et al., Inorg. Chem. Commun., 2011, vol. 14, p. 1097.CrossRefGoogle Scholar
  38. 38.
    SMART and SADABS, Madison: Bruker AXS Inc.Google Scholar
  39. 39.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, p. 3.CrossRefGoogle Scholar
  40. 40.
    Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.CrossRefGoogle Scholar
  41. 41.
    Blatov, V.A. and Shevchenko, A.P., TOPOS 4.0, Russia: Samara State Univ., 1999.Google Scholar
  42. 42.
    Yue, Z.F., Chen, Z.N., Zhong, Y.H., and Li, G., J. Coord. Chem., 2015, vol. 68, p. 2507.CrossRefGoogle Scholar
  43. 43.
    Lu, W.G., Jiang, L., Feng, X.L., and Lu, T.B., Cryst. Growth Des., 2008, vol. 8, p. 986.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. Chen
    • 1
  • H. H. Lan
    • 1
  • Z. X. Li
    • 1
  • D. J. Li
    • 1
  • G. J. Peng
    • 1
  • S. L. Cai
    • 1
    Email author
  • S. R. Zheng
    • 1
    Email author
  • W. G. Zhang
    • 1
  1. 1.School of Chemistry and Environment, South China Normal UniversityGuangzhouP.R. China

Personalised recommendations