Intermolecular Interactions in Crystals of the Photosensitive Coordination Compounds of Zinc(II)
- 11 Downloads
Abstract
The distribution of the electron density function in crystals of {[ZnBpe(Me2Mal)] · H2O}n (I) and [Zn(H2O)4Bpe2](HEt2Mal)2 (II) is obtained by the periodic DFT calculations. Under UV irradiation, compounds I and II transform into [Zn(Bpe)(Me2Mal)]2[Zn2(Тpcb)(Me2Mal)2] · H2O and {[Zn(H2O)4(Bpe)2]0.15[Zn(H2O)4(Tpcb)]0.85(HEt2mMal)4} (Bpe is 1,2-bis(4-pyridine)ethylene, Тpcb is 1,2,3,4-tetrakis(4-pyridine)cyclobutane, H2Me2Mal is dimethylmalonic acid, and H2Et2Mal is diethylmalonic acid), respectively. An analysis of intermolecular contacts using Bader’s “Atoms-in-Molecules” theory shows the bonding route and bond critical point between the carbon atoms of the adjacent 1,2-bis(4-pyridine)ethylene molecules. It is established that the common surface of the Voronoi–Dirichlet molecular polyhedra between the photosensitive fragments can serve as a criterion for the possible participation of the molecules in solid-phase photoinduced reactions.
Keywords:
zinc(II) complexes Voronoi–Dirichlet polyhedra periodic DFT calculationsNotes
ACKNOWLEDGMENTS
The DFT calculations and crystal chemical analysis were supported by the Russian Science Foundation (project no. 17-13-01442). The synthesis of the compounds was supported by the Russian Foundation for Basic Research (project no. 16-33-60179). A.A. Korlyukov is grateful to the Samara Center for Theoretical Materials Science (Samara, Russian Federation) for presented computational sources.
REFERENCES
- 1.Vittal, J.J., Coord. Chem. Rev., 2007, vol. 251, nos. 13–14, p. 1781.CrossRefGoogle Scholar
- 2.Vittal, J.J. and Quah, H.S., Coord. Chem. Rev., 2017, vol. 342, p. 1.CrossRefGoogle Scholar
- 3.Huang, S.-L., Hor, T.S.A., and Jin, G.-X., Coord. Chem. Rev., 2017, vol. 346, p. 112.CrossRefGoogle Scholar
- 4.Cohen, M.D., Angew. Chem., Int. Ed. Engl., 1975, vol. 14, no. 6, p. 386.CrossRefGoogle Scholar
- 5.Kaupp, G., Angew. Chem., Int. Ed. Engl., 1992, vol. 31, no. 5, p. 595.CrossRefGoogle Scholar
- 6.Mir, M.H., Koh, L.L., Tan, G.K., and Vittal, J.J., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, no. 2, p. 390.CrossRefGoogle Scholar
- 7.Liu, D., Ren, Z.-G., Li, H.-X., et al., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, no. 28, p. 4767.CrossRefGoogle Scholar
- 8.Michaelides, A., Skoulika, S., and Siskos, M.G., Chem. Commun., 2011, vol. 47, no. 25, p. 7140.CrossRefGoogle Scholar
- 9.Li, G.-L., Liu, G.-Z., Ma, L.-F., et al., Chem. Commun., 2014, vol. 50, no. 20, p. 2615.CrossRefGoogle Scholar
- 10.Bogadi, R.S., Levendis, D.C., and Coville, N.J., J. Am. Chem. Soc., 2002, vol. 124, no. 6, p. 1104.CrossRefGoogle Scholar
- 11.Zheng, S.-L., Vande Velde, C.M.L., Messerschmidt, M., et al., Chem.-Eur. J., 2008, vol. 14, no. 2, p. 706.CrossRefGoogle Scholar
- 12.Collet, E., Lorenc, M., Cammarata, M., et al., Chem.-Eur. J., 2012, vol. 18, no. 7, p. 2051.CrossRefGoogle Scholar
- 13.Das, A., Reibenspies, J.H., Chen, Y.-S., and Powers, D.C., J. Am. Chem. Soc., 2017, vol. 139, no. 8, p. 2912.CrossRefGoogle Scholar
- 14.Avdeeva, V.V., Buzin, M.I., Dmitrienko, A.O., et al., Chem.-Eur. J., 2017, vol. 23, no. 66, p. 16819.CrossRefGoogle Scholar
- 15.Gnanaguru, K., Ramasubbu, N., Venkatesan, K., and Ramamurthy, V., Org. Chem., 1985, vol. 50, no. 13, p. 2337.CrossRefGoogle Scholar
- 16.Ushakov, E.N., Vedernikov, A.I., Lobova, N.A., et al., J. Phys. Chem. A, 2015, vol. 119, no. 52, p. 13025.CrossRefGoogle Scholar
- 17.Bader, R.F.W., Atoms in Molecules, A Quantum Theory, Oxford: Oxford Univ., 1990.Google Scholar
- 18.Blatov, V.A. and Serezhkin, V.N., Rus. J. Inorg. Chem., 2000, vol. 45, suppl. 2, p. 2.Google Scholar
- 19.Zorina-Tikhonova, E.N., Chistyakov, A.S., Kis-kin, M.A., et al., IUCRJ, 2018, vol. 5, no. 3, p. 293.CrossRefGoogle Scholar
- 20.Kresse, G. and Hafner, J., Phys. Rev. B, 1993, vol. 47, no. 1, p. 558.CrossRefGoogle Scholar
- 21.Kresse, G. and Furthmüller, J., Phys. Rev. B, 1996, vol. 54, no. 16, p. 11169.CrossRefGoogle Scholar
- 22.Kresse, G. and Furthmüller, J., Comput. Mater. Sci., 1996, vol. 6, no. 6, p. 15.CrossRefGoogle Scholar
- 23.Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, no. 7, p. 1456.CrossRefGoogle Scholar
- 24.Otero-de-la-Roza, A., Johnson, E.R., and Luana, V., Comput. Phys. Commun., 2014, vol. 185, no. 3, p. 1007.CrossRefGoogle Scholar
- 25.Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Cryst. Growth Des., 2014, vol. 14, no. 7, p. 3576.CrossRefGoogle Scholar
- 26.Blatova, O.A., Blatov, V.A., and Serezhkin, V.N., Acta Crystallogr. Sect. B: Struct. Sci., 2001, vol. 57, no. 2, p. 261.CrossRefGoogle Scholar
- 27.Peresypkina, E.V. and Blatov, V.A., Acta Crystallogr. Sect. B: Struct. Sci., 2000, vol. 56, no. 6, p. 1035.CrossRefGoogle Scholar
- 28.Serezhkin, V.N. and Savchenkov, A.V., Cryst. Growth Des., 2015, vol. 15, no. 6, p. 2878.CrossRefGoogle Scholar
- 29.Vologzhanina, A.V. and Lyssenko, K.A., Russ. Chem. Bull., 2013, vol. 62, no. 8, p. 1786.CrossRefGoogle Scholar
- 30.Smol’yakov, A.F., Korlyukov, A.A., Dolgushin, F.M., et al., Eur. J. Inorg. Chem., 2015, vol. 2015, no. 36, p. 5847.CrossRefGoogle Scholar
- 31.Carugo, O., Blatova, O.A., Medrish, E.O., et al., Sci. Rep., 2017, vol. 7, p. 13209.CrossRefGoogle Scholar
- 32.Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, nos. 3–4, p. 170.CrossRefGoogle Scholar