Advertisement

Russian Journal of Coordination Chemistry

, Volume 44, Issue 12, pp 733–737 | Cite as

Intermolecular Interactions in Crystals of the Photosensitive Coordination Compounds of Zinc(II)

  • A. V. VologzhaninaEmail author
  • E. N. Zorina-Tikhonova
  • A. S. Chistyakov
  • A. A. Sidorov
  • A. A. Korlyukov
  • I. L. Eremenko
Article
  • 11 Downloads

Abstract

The distribution of the electron density function in crystals of {[ZnBpe(Me2Mal)] · H2O}n (I) and [Zn(H2O)4Bpe2](HEt2Mal)2 (II) is obtained by the periodic DFT calculations. Under UV irradiation, compounds I and II transform into [Zn(Bpe)(Me2Mal)]2[Zn2(Тpcb)(Me2Mal)2] · H2O and {[Zn(H2O)4(Bpe)2]0.15[Zn(H2O)4(Tpcb)]0.85(HEt2mMal)4} (Bpe is 1,2-bis(4-pyridine)ethylene, Тpcb is 1,2,3,4-tetrakis(4-pyridine)cyclobutane, H2Me2Mal is dimethylmalonic acid, and H2Et2Mal is diethylmalonic acid), respectively. An analysis of intermolecular contacts using Bader’s “Atoms-in-Molecules” theory shows the bonding route and bond critical point between the carbon atoms of the adjacent 1,2-bis(4-pyridine)ethylene molecules. It is established that the common surface of the Voronoi–Dirichlet molecular polyhedra between the photosensitive fragments can serve as a criterion for the possible participation of the molecules in solid-phase photoinduced reactions.

Keywords:

zinc(II) complexes Voronoi–Dirichlet polyhedra periodic DFT calculations 

Notes

ACKNOWLEDGMENTS

The DFT calculations and crystal chemical analysis were supported by the Russian Science Foundation (project no. 17-13-01442). The synthesis of the compounds was supported by the Russian Foundation for Basic Research (project no. 16-33-60179). A.A. Korlyukov is grateful to the Samara Center for Theoretical Materials Science (Samara, Russian Federation) for presented computational sources.

REFERENCES

  1. 1.
    Vittal, J.J., Coord. Chem. Rev., 2007, vol. 251, nos. 13–14, p. 1781.CrossRefGoogle Scholar
  2. 2.
    Vittal, J.J. and Quah, H.S., Coord. Chem. Rev., 2017, vol. 342, p. 1.CrossRefGoogle Scholar
  3. 3.
    Huang, S.-L., Hor, T.S.A., and Jin, G.-X., Coord. Chem. Rev., 2017, vol. 346, p. 112.CrossRefGoogle Scholar
  4. 4.
    Cohen, M.D., Angew. Chem., Int. Ed. Engl., 1975, vol. 14, no. 6, p. 386.CrossRefGoogle Scholar
  5. 5.
    Kaupp, G., Angew. Chem., Int. Ed. Engl., 1992, vol. 31, no. 5, p. 595.CrossRefGoogle Scholar
  6. 6.
    Mir, M.H., Koh, L.L., Tan, G.K., and Vittal, J.J., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, no. 2, p. 390.CrossRefGoogle Scholar
  7. 7.
    Liu, D., Ren, Z.-G., Li, H.-X., et al., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, no. 28, p. 4767.CrossRefGoogle Scholar
  8. 8.
    Michaelides, A., Skoulika, S., and Siskos, M.G., Chem. Commun., 2011, vol. 47, no. 25, p. 7140.CrossRefGoogle Scholar
  9. 9.
    Li, G.-L., Liu, G.-Z., Ma, L.-F., et al., Chem. Commun., 2014, vol. 50, no. 20, p. 2615.CrossRefGoogle Scholar
  10. 10.
    Bogadi, R.S., Levendis, D.C., and Coville, N.J., J. Am. Chem. Soc., 2002, vol. 124, no. 6, p. 1104.CrossRefGoogle Scholar
  11. 11.
    Zheng, S.-L., Vande Velde, C.M.L., Messerschmidt, M., et al., Chem.-Eur. J., 2008, vol. 14, no. 2, p. 706.CrossRefGoogle Scholar
  12. 12.
    Collet, E., Lorenc, M., Cammarata, M., et al., Chem.-Eur. J., 2012, vol. 18, no. 7, p. 2051.CrossRefGoogle Scholar
  13. 13.
    Das, A., Reibenspies, J.H., Chen, Y.-S., and Powers, D.C., J. Am. Chem. Soc., 2017, vol. 139, no. 8, p. 2912.CrossRefGoogle Scholar
  14. 14.
    Avdeeva, V.V., Buzin, M.I., Dmitrienko, A.O., et al., Chem.-Eur. J., 2017, vol. 23, no. 66, p. 16819.CrossRefGoogle Scholar
  15. 15.
    Gnanaguru, K., Ramasubbu, N., Venkatesan, K., and Ramamurthy, V., Org. Chem., 1985, vol. 50, no. 13, p. 2337.CrossRefGoogle Scholar
  16. 16.
    Ushakov, E.N., Vedernikov, A.I., Lobova, N.A., et al., J. Phys. Chem. A, 2015, vol. 119, no. 52, p. 13025.CrossRefGoogle Scholar
  17. 17.
    Bader, R.F.W., Atoms in Molecules, A Quantum Theory, Oxford: Oxford Univ., 1990.Google Scholar
  18. 18.
    Blatov, V.A. and Serezhkin, V.N., Rus. J. Inorg. Chem., 2000, vol. 45, suppl. 2, p. 2.Google Scholar
  19. 19.
    Zorina-Tikhonova, E.N., Chistyakov, A.S., Kis-kin, M.A., et al., IUCRJ, 2018, vol. 5, no. 3, p. 293.CrossRefGoogle Scholar
  20. 20.
    Kresse, G. and Hafner, J., Phys. Rev. B, 1993, vol. 47, no. 1, p. 558.CrossRefGoogle Scholar
  21. 21.
    Kresse, G. and Furthmüller, J., Phys. Rev. B, 1996, vol. 54, no. 16, p. 11169.CrossRefGoogle Scholar
  22. 22.
    Kresse, G. and Furthmüller, J., Comput. Mater. Sci., 1996, vol. 6, no. 6, p. 15.CrossRefGoogle Scholar
  23. 23.
    Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, no. 7, p. 1456.CrossRefGoogle Scholar
  24. 24.
    Otero-de-la-Roza, A., Johnson, E.R., and Luana, V., Comput. Phys. Commun., 2014, vol. 185, no. 3, p. 1007.CrossRefGoogle Scholar
  25. 25.
    Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Cryst. Growth Des., 2014, vol. 14, no. 7, p. 3576.CrossRefGoogle Scholar
  26. 26.
    Blatova, O.A., Blatov, V.A., and Serezhkin, V.N., Acta Crystallogr. Sect. B: Struct. Sci., 2001, vol. 57, no. 2, p. 261.CrossRefGoogle Scholar
  27. 27.
    Peresypkina, E.V. and Blatov, V.A., Acta Crystallogr. Sect. B: Struct. Sci., 2000, vol. 56, no. 6, p. 1035.CrossRefGoogle Scholar
  28. 28.
    Serezhkin, V.N. and Savchenkov, A.V., Cryst. Growth Des., 2015, vol. 15, no. 6, p. 2878.CrossRefGoogle Scholar
  29. 29.
    Vologzhanina, A.V. and Lyssenko, K.A., Russ. Chem. Bull., 2013, vol. 62, no. 8, p. 1786.CrossRefGoogle Scholar
  30. 30.
    Smol’yakov, A.F., Korlyukov, A.A., Dolgushin, F.M., et al., Eur. J. Inorg. Chem., 2015, vol. 2015, no. 36, p. 5847.CrossRefGoogle Scholar
  31. 31.
    Carugo, O., Blatova, O.A., Medrish, E.O., et al., Sci. Rep., 2017, vol. 7, p. 13209.CrossRefGoogle Scholar
  32. 32.
    Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, nos. 3–4, p. 170.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Vologzhanina
    • 1
    Email author
  • E. N. Zorina-Tikhonova
    • 2
  • A. S. Chistyakov
    • 2
  • A. A. Sidorov
    • 2
  • A. A. Korlyukov
    • 1
  • I. L. Eremenko
    • 1
    • 2
  1. 1.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations