Russian Journal of Coordination Chemistry

, Volume 44, Issue 10, pp 613–618 | Cite as

Some Transformations of trans-Tetrapyridine Complexes of Nitrosoruthenium: Crystal Structures of [Ru(NO)Py4(OH)](PF6)2 ⋅ (CH3)2CO and [H5O2]2[Ru(NO)Py4Cl]Cl4

  • A. N. Makhinya
  • M. A. Il’inEmail author
  • I. V. Korol’kov
  • I. A. Baidina


The slow evaporation of an acetone solution containing trans-[Ru(NO)Py4(OH)]2+ cations and hexafluorophosphate anions results in the crystallization of trans-[Ru(NO)Py4(OH)](PF6)2 ⋅ (CH3)2CO (I). The reactions of trans‑[Ru(NO)Py4(OH)]Cl2 ⋅ H2O with solutions of chloric or hydrochloric acid followed by the evaporation of the reaction solutions at ambient temperature afford trans-[Ru(NO)Py4(H2O)](ClO4)3 (II) or [H5O2]2[Ru(NO)Py4Cl]Cl4 (III), respectively. The obtained chloride complex III is unstable and at ambient temperature eliminates hydrogen chloride to transform into trans-[Ru(NO)Py4Cl]Cl2 ⋅ 4H2O (IV). The crystal structures of compounds I and III are determined by X-ray structure analysis (CIF files ССDC nos. 1421042 (I) and 1421041 (III)).


nitrosoruthenium complexes amino complexes pyridine chloride complexes hydroxo complexes X-ray structure analysis IR spectroscopy 



The authors are grateful to N.I. Alferova for recording IR spectra and to N.P. Korotkevich for the detection of powder diffraction patterns.

This work was supported by the Complex program for basic research of the Siberian Branch of the Russian Academy of Sciences, project no. II.1.16.1.


  1. 1.
    Silva, J.J., Osakabe, A.L., Pavanelli, W.R., et al., Br. J. Pharmacol., 2007, vol. 152, p. 112.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tfouni, E., Truzzi, D.R., Tavares, A., et al., Nitric Oxide, 2012, vol. 26, p. 38.CrossRefPubMedGoogle Scholar
  3. 3.
    Woike, T., Kirchner, W., Shetter, G., et al., Opt. Commun., 1994, vol. 106, p. 6.CrossRefGoogle Scholar
  4. 4.
    Coppens, P., Novozhilova, I., and Kovalevsky, A., Chem. Rev., 2002, vol. 102, p. 861.CrossRefPubMedGoogle Scholar
  5. 5.
    Schaniel, D., Woike, T., and Delley, B., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 1164.CrossRefPubMedGoogle Scholar
  6. 6.
    Kushch, L.A., Golhen, S., Cador, O., et al., J. Cluster Sci., 2006, vol. 17, p. 303.CrossRefGoogle Scholar
  7. 7.
    Schaniel, D., Woike, T., Kusch, L., and Yagubskii, E., Chem. Phys., 2007, vol. 340, p. 211.CrossRefGoogle Scholar
  8. 8.
    Schaniel, D., Cormary, B., Malfant, I., et al., Phys. Chem. Chem. Phys., 2007, vol. 9, p. 3717.CrossRefPubMedGoogle Scholar
  9. 9.
    Cormary, B., Ladeira, S., Jacob, K., et al., Inorg. Chem., 2012, vol. 51, p. 7492.CrossRefPubMedGoogle Scholar
  10. 10.
    Bottomley, F. and Mukaida, M., J. Chem. Soc., Dalton Trans., 1982, no. 10, p. 1933.Google Scholar
  11. 11.
    Coe, B.J., Meyer, T.J., and White, P.S., Inorg. Chem., 1995, vol. 34, no. 3, p. 593.CrossRefGoogle Scholar
  12. 12.
    Calandreli, I., Oliveira, F.S., Liang, G., et al., Inorg. Chem. Commun., 2009, vol. 12, no. 7, p. 591.CrossRefGoogle Scholar
  13. 13.
    Makhinya, A.N., Il’yin, M.A., Yamaletdinov, R.D., et al., Russ. J. Coord. Chem., 2016, vol. 42, p. 768. doi 10.1134/S1070328416120046CrossRefGoogle Scholar
  14. 14.
    Origin Pro 7.5. SR0. V. 7.5714 B(714). Northampton: OriginLab Corporation, 2003.Google Scholar
  15. 15.
    Sheldrick, G.M., SHELX-97. Release97-1. Programs for the Refinement of Crystal Structures, Göttingen: Univ. of Göttingen, 1997.Google Scholar
  16. 16.
    Nishimura, H., Matsuzawa, H., Togano, T., et al., J. Chem. Soc., Dalton Trans., 1990, no. 1, p. 137.Google Scholar
  17. 17.
    Kostin, G.A., Borodin, A.O., Mikhailov, A.A., et al., Eur. J. Inorg. Chem., 2015, vol. 29, p. 4905.CrossRefGoogle Scholar
  18. 18.
    Il’yin, M.A., Emel’yanov, V.A., Belyaev, A.V., et al., Russ. J. Inorg. Chem., 2008, vol. 53, no. 7, p. 1070.CrossRefGoogle Scholar
  19. 19.
    Makhinya, A.N., Il’in, M.A., Baidina, I.A., et al., Russ. J. Struct. Chem., 2014, vol. 55, no. 4, p. 682.CrossRefGoogle Scholar
  20. 20.
    Il’in, M.A., Makhinya, A.N., Baidina, I.A., and Tkachev, S.V., Inorg. Chim. Acta, 2014, no. 413, p. 90.Google Scholar
  21. 21.
    Makhinya, A.N., Il’in, M.A., Yamaletdinov, R.D., and Baidina, I.A., New J. Chem., 2016, vol. 40, p. 10267.CrossRefGoogle Scholar
  22. 22.
    Mercer, E.E., McAlister, W.A., and Durig, J.R., Inorg. Chem., 1966, vol. 5, no. 11, p. 1881.CrossRefGoogle Scholar
  23. 23.
    Rose, M.J. and Mascharak, P.K., Coord. Chem. Rev., 2008, no. 252, p. 2093.Google Scholar
  24. 24.
    Borges, S.S.S., Davanzo, C.U., Castellano, E.E., et al., Inorg. Chem., 1998, vol. 37, p. 2670.CrossRefPubMedGoogle Scholar
  25. 25.
    Gomes, M.G., Davanzo, C.U., Silva, S.C., et al., Dalton. Trans, 1998, p. 601.Google Scholar
  26. 26.
    Il’in, M.A., Emel’yanov, V.A., and Baidina, I.A., Russ. J. Struct. Chem., 2008, vol. 49, no. 6, p. 1090.CrossRefGoogle Scholar
  27. 27.
    Ookubo, K., Morioka, Y., Tomizawa, H., and Miki, E., J. Mol. Struct., 1996, vol. 379, p. 241.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Makhinya
    • 1
    • 2
  • M. A. Il’in
    • 1
    • 2
    Email author
  • I. V. Korol’kov
    • 1
    • 2
  • I. A. Baidina
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations